Predicting the topology of braided structures in arbitrarily composite preforms based on yarn interactions

IF 1.6 4区 工程技术 Q2 MATERIALS SCIENCE, TEXTILES
Qiyang Li, Chengchang Ji, Shiyi Li, Xinfu Chi, Yize Sun
{"title":"Predicting the topology of braided structures in arbitrarily composite preforms based on yarn interactions","authors":"Qiyang Li, Chengchang Ji, Shiyi Li, Xinfu Chi, Yize Sun","doi":"10.1177/00405175241241819","DOIUrl":null,"url":null,"abstract":"The performance of braided fiber-reinforced composites is determined by the braided structure, so yarn spatial arrangement prediction is a crucial step in the manufacturing process of fiber-reinforced composites. This study aims to predict fabric on arbitrary mandrels based on the yarn interactions, especially for mandrels with flat surfaces. An interaction yarn deposition model is proposed to simulate the process of braiding arbitrary-shaped mandrels. A dynamic deposition model is established at the moment of deposition, and a quasi-static equilibrium equation is added to determine the spatial position of yarn interaction points. Post-processing of positional information is performed to obtain the yarn spatial arrangement on the mandrel’s surface. Experiments were conducted using Zhongfu Shenying 12K T700 carbon yarn and Yunlu Composite 176-carrier radial braiding equipment. The experimental results show that the actual fabric exhibits an S-shaped distribution on the flat surface of the mandrel, matching the predicted results of the model.","PeriodicalId":22323,"journal":{"name":"Textile Research Journal","volume":"23 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textile Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00405175241241819","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0

Abstract

The performance of braided fiber-reinforced composites is determined by the braided structure, so yarn spatial arrangement prediction is a crucial step in the manufacturing process of fiber-reinforced composites. This study aims to predict fabric on arbitrary mandrels based on the yarn interactions, especially for mandrels with flat surfaces. An interaction yarn deposition model is proposed to simulate the process of braiding arbitrary-shaped mandrels. A dynamic deposition model is established at the moment of deposition, and a quasi-static equilibrium equation is added to determine the spatial position of yarn interaction points. Post-processing of positional information is performed to obtain the yarn spatial arrangement on the mandrel’s surface. Experiments were conducted using Zhongfu Shenying 12K T700 carbon yarn and Yunlu Composite 176-carrier radial braiding equipment. The experimental results show that the actual fabric exhibits an S-shaped distribution on the flat surface of the mandrel, matching the predicted results of the model.
基于纱线相互作用预测任意复合预型件中编织结构的拓扑结构
编织纤维增强复合材料的性能由编织结构决定,因此纱线空间排列预测是纤维增强复合材料制造过程中的关键步骤。本研究旨在根据纱线相互作用预测任意芯轴上的织物,尤其是表面平坦的芯轴。本文提出了一种纱线相互作用沉积模型,用于模拟任意形状心轴的编织过程。在沉积瞬间建立动态沉积模型,并添加准静态平衡方程来确定纱线交互点的空间位置。对位置信息进行后处理,以获得纱线在芯轴表面的空间排列。实验使用中复神鹰 12K T700 碳纤维纱和云路复合 176 载体径向编织设备进行。实验结果表明,实际织物在心轴平面上呈 S 形分布,与模型的预测结果相符。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Textile Research Journal
Textile Research Journal 工程技术-材料科学:纺织
CiteScore
4.00
自引率
21.70%
发文量
309
审稿时长
1.5 months
期刊介绍: The Textile Research Journal is the leading peer reviewed Journal for textile research. It is devoted to the dissemination of fundamental, theoretical and applied scientific knowledge in materials, chemistry, manufacture and system sciences related to fibers, fibrous assemblies and textiles. The Journal serves authors and subscribers worldwide, and it is selective in accepting contributions on the basis of merit, novelty and originality.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信