Qiyang Li, Chengchang Ji, Shiyi Li, Xinfu Chi, Yize Sun
{"title":"Predicting the topology of braided structures in arbitrarily composite preforms based on yarn interactions","authors":"Qiyang Li, Chengchang Ji, Shiyi Li, Xinfu Chi, Yize Sun","doi":"10.1177/00405175241241819","DOIUrl":null,"url":null,"abstract":"The performance of braided fiber-reinforced composites is determined by the braided structure, so yarn spatial arrangement prediction is a crucial step in the manufacturing process of fiber-reinforced composites. This study aims to predict fabric on arbitrary mandrels based on the yarn interactions, especially for mandrels with flat surfaces. An interaction yarn deposition model is proposed to simulate the process of braiding arbitrary-shaped mandrels. A dynamic deposition model is established at the moment of deposition, and a quasi-static equilibrium equation is added to determine the spatial position of yarn interaction points. Post-processing of positional information is performed to obtain the yarn spatial arrangement on the mandrel’s surface. Experiments were conducted using Zhongfu Shenying 12K T700 carbon yarn and Yunlu Composite 176-carrier radial braiding equipment. The experimental results show that the actual fabric exhibits an S-shaped distribution on the flat surface of the mandrel, matching the predicted results of the model.","PeriodicalId":22323,"journal":{"name":"Textile Research Journal","volume":"23 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Textile Research Journal","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1177/00405175241241819","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, TEXTILES","Score":null,"Total":0}
引用次数: 0
Abstract
The performance of braided fiber-reinforced composites is determined by the braided structure, so yarn spatial arrangement prediction is a crucial step in the manufacturing process of fiber-reinforced composites. This study aims to predict fabric on arbitrary mandrels based on the yarn interactions, especially for mandrels with flat surfaces. An interaction yarn deposition model is proposed to simulate the process of braiding arbitrary-shaped mandrels. A dynamic deposition model is established at the moment of deposition, and a quasi-static equilibrium equation is added to determine the spatial position of yarn interaction points. Post-processing of positional information is performed to obtain the yarn spatial arrangement on the mandrel’s surface. Experiments were conducted using Zhongfu Shenying 12K T700 carbon yarn and Yunlu Composite 176-carrier radial braiding equipment. The experimental results show that the actual fabric exhibits an S-shaped distribution on the flat surface of the mandrel, matching the predicted results of the model.
期刊介绍:
The Textile Research Journal is the leading peer reviewed Journal for textile research. It is devoted to the dissemination of fundamental, theoretical and applied scientific knowledge in materials, chemistry, manufacture and system sciences related to fibers, fibrous assemblies and textiles. The Journal serves authors and subscribers worldwide, and it is selective in accepting contributions on the basis of merit, novelty and originality.