Stein-like Common Correlated Effects Estimation under Structural Breaks

IF 1.1 Q3 ECONOMICS
Shahnaz Parsaeian
{"title":"Stein-like Common Correlated Effects Estimation under Structural Breaks","authors":"Shahnaz Parsaeian","doi":"10.3390/econometrics12020011","DOIUrl":null,"url":null,"abstract":"This paper develops a Stein-like combined estimator for large heterogeneous panel data models under common structural breaks. The model allows for cross-sectional dependence through a general multifactor error structure. By utilizing the common correlated effects (CCE) estimation technique, we propose a Stein-like combined estimator of the CCE full-sample estimator (i.e., estimation using both the pre-break and post-break observations) and the CCE post-break estimator (i.e., estimation using only the post-break sample observations). The proposed Stein-like combined estimator benefits from exploiting the pre-break sample observations. We derive the optimal combination weight by minimizing the asymptotic risk. We show the superiority of the CCE Stein-like combined estimator over the CCE post-break estimator in terms of the asymptotic risk. Further, we establish the asymptotic properties of the CCE mean group Stein-like combined estimator. The finite sample performance of our proposed estimator is investigated using Monte Carlo experiments and an empirical application of predicting the output growth of industrialized countries.","PeriodicalId":11499,"journal":{"name":"Econometrics","volume":"468 1","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Econometrics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/econometrics12020011","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ECONOMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This paper develops a Stein-like combined estimator for large heterogeneous panel data models under common structural breaks. The model allows for cross-sectional dependence through a general multifactor error structure. By utilizing the common correlated effects (CCE) estimation technique, we propose a Stein-like combined estimator of the CCE full-sample estimator (i.e., estimation using both the pre-break and post-break observations) and the CCE post-break estimator (i.e., estimation using only the post-break sample observations). The proposed Stein-like combined estimator benefits from exploiting the pre-break sample observations. We derive the optimal combination weight by minimizing the asymptotic risk. We show the superiority of the CCE Stein-like combined estimator over the CCE post-break estimator in terms of the asymptotic risk. Further, we establish the asymptotic properties of the CCE mean group Stein-like combined estimator. The finite sample performance of our proposed estimator is investigated using Monte Carlo experiments and an empirical application of predicting the output growth of industrialized countries.
结构断裂下的斯坦因类共同相关效应估计
本文为常见结构断裂下的大型异质面板数据模型开发了一种类似 Stein 的组合估计器。该模型通过一般的多因素误差结构实现了横截面依赖性。通过利用共同相关效应(CCE)估计技术,我们提出了 CCE 全样本估计器(即使用断裂前和断裂后的观测数据进行估计)和 CCE 断裂后估计器(即仅使用断裂后的样本观测数据进行估计)的类似 Stein 的组合估计器。拟议的类似 Stein 的组合估计器可利用破晓前的样本观测数据。我们通过最小化渐近风险推导出最佳组合权重。我们证明了 CCE 类 Stein 组合估计器在渐近风险方面优于 CCE 断裂后估计器。此外,我们还建立了 CCE 均值组斯坦因类组合估计器的渐近特性。我们利用蒙特卡罗实验和预测工业化国家产出增长的经验应用,研究了我们提出的估计器的有限样本性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Econometrics
Econometrics Economics, Econometrics and Finance-Economics and Econometrics
CiteScore
2.40
自引率
20.00%
发文量
30
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信