Douady–Earle Extensions of Circle Homeomorphisms with One-Point Differentiability at a Hölder Convergence Rate

Pub Date : 2024-04-17 DOI:10.1007/s40315-024-00540-9
Jinhua Fan, Jun Hu, Zhenyong Hu
{"title":"Douady–Earle Extensions of Circle Homeomorphisms with One-Point Differentiability at a Hölder Convergence Rate","authors":"Jinhua Fan, Jun Hu, Zhenyong Hu","doi":"10.1007/s40315-024-00540-9","DOIUrl":null,"url":null,"abstract":"<p>Let <i>h</i> be a sense-preserving homeomorphism of the unit circle <span>\\({\\mathbb {S}}\\)</span> and <span>\\(\\Phi (h)\\)</span> the Douady–Earle extension of <i>h</i> to the closure of the open disk <span>\\({\\mathbb {D}}\\)</span>. In this paper, assuming that <i>h</i> is differentiable at a point <span>\\(\\xi \\in {\\mathbb {S}}\\)</span> with <span>\\(\\alpha \\)</span>-Hölder convergence rate for some <span>\\(0&lt;\\alpha &lt;1\\)</span>, we prove a similar regularity for <span>\\(\\Phi (h)\\)</span> near <span>\\(\\xi \\)</span> on <span>\\({\\mathbb {D}}\\)</span> in any non-tangential direction towards <span>\\(\\xi \\)</span>.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s40315-024-00540-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let h be a sense-preserving homeomorphism of the unit circle \({\mathbb {S}}\) and \(\Phi (h)\) the Douady–Earle extension of h to the closure of the open disk \({\mathbb {D}}\). In this paper, assuming that h is differentiable at a point \(\xi \in {\mathbb {S}}\) with \(\alpha \)-Hölder convergence rate for some \(0<\alpha <1\), we prove a similar regularity for \(\Phi (h)\) near \(\xi \) on \({\mathbb {D}}\) in any non-tangential direction towards \(\xi \).

分享
查看原文
圆同构的杜阿迪-厄尔扩展与赫尔德收敛率下的单点可微分性
假设 h 是单位圆 \({\mathbb {S}}\) 的保感同构,并且 \(\Phi (h)\) 是 h 到开圆盘 \({\mathbb {D}}\) 闭合的 Douady-Earle 扩展。在本文中,假设h在{\mathbb {S}}中的点\(\xi\)处是可微的(\(\alpha\)-Hölder收敛率为某个\(0<;\1),我们证明了在({\mathbb {D}})上任何朝向(\xi )的非切线方向上,靠近(\xi )的(\Phi (h))具有类似的正则性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信