{"title":"Photochemical reduction of ultrasmall Pt nanoparticles on single-layer transition-metal dichalcogenides for hydrogen evolution reactions","authors":"Liang Mei, Yuefeng Zhang, Ting Ying, Weikang Zheng, Honglu Hu, Ruijie Yang, Ruixin Yan, Yue Zhang, Chong Cheng, Bilu Liu, Shuang Li, Zhiyuan Zeng","doi":"10.1016/j.mtener.2023.101487","DOIUrl":null,"url":null,"abstract":"Single-layer TaS and TiS nanosheets were meticulously synthesized through an electrochemical lithium-intercalation-based exfoliation method. Subsequently, ultrasmall Pt nanoparticles, finely sized between 1.2 and 1.6 nm, were expertly deposited onto these monolayer nanosheets via an environmentally friendly photochemical reduction process. The resulted Pt-TaS and Pt-TiS composites exhibit hydrogen evolution reaction (HER) activity comparable with commercial Pt/C. Density functional theory calculations reveal that the introduced Pt (111) plane energetically promotes the adsorption of ∗H with an optimal ΔG value of 0.09 eV. Furthermore, these composite materials demonstrate outstanding cycle stability, far exceeding that of Pt/C. This compelling performance underscores the potential of Pt-TaS and Pt-TiS hybrids as promising alternatives for HER catalysts.","PeriodicalId":18277,"journal":{"name":"Materials Today Energy","volume":"61 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Today Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.mtener.2023.101487","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Single-layer TaS and TiS nanosheets were meticulously synthesized through an electrochemical lithium-intercalation-based exfoliation method. Subsequently, ultrasmall Pt nanoparticles, finely sized between 1.2 and 1.6 nm, were expertly deposited onto these monolayer nanosheets via an environmentally friendly photochemical reduction process. The resulted Pt-TaS and Pt-TiS composites exhibit hydrogen evolution reaction (HER) activity comparable with commercial Pt/C. Density functional theory calculations reveal that the introduced Pt (111) plane energetically promotes the adsorption of ∗H with an optimal ΔG value of 0.09 eV. Furthermore, these composite materials demonstrate outstanding cycle stability, far exceeding that of Pt/C. This compelling performance underscores the potential of Pt-TaS and Pt-TiS hybrids as promising alternatives for HER catalysts.
期刊介绍:
Materials Today Energy is a multi-disciplinary, rapid-publication journal focused on all aspects of materials for energy.
Materials Today Energy provides a forum for the discussion of high quality research that is helping define the inclusive, growing field of energy materials.
Part of the Materials Today family, Materials Today Energy offers authors rigorous peer review, rapid decisions, and high visibility. The editors welcome comprehensive articles, short communications and reviews on both theoretical and experimental work in relation to energy harvesting, conversion, storage and distribution, on topics including but not limited to:
-Solar energy conversion
-Hydrogen generation
-Photocatalysis
-Thermoelectric materials and devices
-Materials for nuclear energy applications
-Materials for Energy Storage
-Environment protection
-Sustainable and green materials