{"title":"Learning topological defects formation with neural networks in a quantum phase transition","authors":"Han-Qing Shi, Hai-Qing Zhang","doi":"10.1088/1572-9494/ad3227","DOIUrl":null,"url":null,"abstract":"Neural networks possess formidable representational power, rendering them invaluable in solving complex quantum many-body systems. While they excel at analyzing static solutions, nonequilibrium processes, including critical dynamics during a quantum phase transition, pose a greater challenge for neural networks. To address this, we utilize neural networks and machine learning algorithms to investigate time evolutions, universal statistics, and correlations of topological defects in a one-dimensional transverse-field quantum Ising model. Specifically, our analysis involves computing the energy of the system during a quantum phase transition following a linear quench of the transverse magnetic field strength. The excitation energies satisfy a power-law relation to the quench rate, indicating a proportional relationship between the excitation energy and the kink numbers. Moreover, we establish a universal power-law relationship between the first three cumulants of the kink numbers and the quench rate, indicating a binomial distribution of the kinks. Finally, the normalized kink-kink correlations are also investigated and it is found that the numerical values are consistent with the analytic formula.","PeriodicalId":10641,"journal":{"name":"Communications in Theoretical Physics","volume":"16 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Theoretical Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1572-9494/ad3227","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Neural networks possess formidable representational power, rendering them invaluable in solving complex quantum many-body systems. While they excel at analyzing static solutions, nonequilibrium processes, including critical dynamics during a quantum phase transition, pose a greater challenge for neural networks. To address this, we utilize neural networks and machine learning algorithms to investigate time evolutions, universal statistics, and correlations of topological defects in a one-dimensional transverse-field quantum Ising model. Specifically, our analysis involves computing the energy of the system during a quantum phase transition following a linear quench of the transverse magnetic field strength. The excitation energies satisfy a power-law relation to the quench rate, indicating a proportional relationship between the excitation energy and the kink numbers. Moreover, we establish a universal power-law relationship between the first three cumulants of the kink numbers and the quench rate, indicating a binomial distribution of the kinks. Finally, the normalized kink-kink correlations are also investigated and it is found that the numerical values are consistent with the analytic formula.
期刊介绍:
Communications in Theoretical Physics is devoted to reporting important new developments in the area of theoretical physics. Papers cover the fields of:
mathematical physics
quantum physics and quantum information
particle physics and quantum field theory
nuclear physics
gravitation theory, astrophysics and cosmology
atomic, molecular, optics (AMO) and plasma physics, chemical physics
statistical physics, soft matter and biophysics
condensed matter theory
others
Certain new interdisciplinary subjects are also incorporated.