Runzhe Wei, Yi Lu, Wanjun Ren, Yupei Han, Ajay Piriya Vijaya Kumar Saroja, Xueming Xia, Pan He, Charlie A F Nason, Zhixin Sun, Jawwad A Darr, Jiayan Luo, Min Zhou, Yang Xu
{"title":"Enhancing reversible Na-ion intercalation by introducing K-ions into layered vanadyl phosphate for sodium-ion battery cathodes","authors":"Runzhe Wei, Yi Lu, Wanjun Ren, Yupei Han, Ajay Piriya Vijaya Kumar Saroja, Xueming Xia, Pan He, Charlie A F Nason, Zhixin Sun, Jawwad A Darr, Jiayan Luo, Min Zhou, Yang Xu","doi":"10.1088/2515-7655/ad3c27","DOIUrl":null,"url":null,"abstract":"Vanadium-based phosphates are being extensively studied as an important family of sodium-ion battery (SIB) cathodes. Among many compositions, NaVOPO<sub>4</sub> is considered because of various polymorphs and the high redox potential of V<sup>4+/5+</sup>. However, due to relatively poor intrinsic kinetics and electronic conductivity, approaches such as nanostructuring and carbon composites are commonly used to avoid fast performance degradation. Being different from mainstream approaches, this work utilizes the knowledge gained from potassium-ion batteries (PIBs) and applies layered KVOPO<sub>4</sub>, a PIB cathode material, as a SIB cathode material. The results demonstrate that KVOPO<sub>4</sub> experiences an electrochemical K<sup>+</sup>-Na<sup>+</sup> exchange during the initial cycle and a Na-dominated (de)intercalation process in the following cycles. The initial exchange results in a small amount of K<sup>+</sup> (∼0.1 K per formula) remaining in the interlayer space and owing to the larger size of K<sup>+</sup> than Na<sup>+</sup>, the residual K<sup>+</sup> effectively acts as ‘pillars’ to expand interlayer spacing and facilitates the Na (de)intercalation, leading to enhanced reversible Na storage and diffusion kinetics of KVOPO<sub>4</sub> compared to its Na counterpart NaVOPO<sub>4</sub>. KVOPO<sub>4</sub> delivers an initial discharge capacity of 120 mAh g<sup>−1</sup> (90% of the theoretical capacity) at 10 mA g<sup>−1</sup> and retains 88% capacity after 150 cycles. It also delivers 52 mAh g<sup>−1</sup> at 1 A g<sup>−1</sup> and 91% capacity retention after 1000 cycles at 100 mA g<sup>−1</sup>, completely outperforming NaVOPO<sub>4</sub>.","PeriodicalId":48500,"journal":{"name":"Journal of Physics-Energy","volume":"439 1","pages":""},"PeriodicalIF":7.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics-Energy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1088/2515-7655/ad3c27","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Vanadium-based phosphates are being extensively studied as an important family of sodium-ion battery (SIB) cathodes. Among many compositions, NaVOPO4 is considered because of various polymorphs and the high redox potential of V4+/5+. However, due to relatively poor intrinsic kinetics and electronic conductivity, approaches such as nanostructuring and carbon composites are commonly used to avoid fast performance degradation. Being different from mainstream approaches, this work utilizes the knowledge gained from potassium-ion batteries (PIBs) and applies layered KVOPO4, a PIB cathode material, as a SIB cathode material. The results demonstrate that KVOPO4 experiences an electrochemical K+-Na+ exchange during the initial cycle and a Na-dominated (de)intercalation process in the following cycles. The initial exchange results in a small amount of K+ (∼0.1 K per formula) remaining in the interlayer space and owing to the larger size of K+ than Na+, the residual K+ effectively acts as ‘pillars’ to expand interlayer spacing and facilitates the Na (de)intercalation, leading to enhanced reversible Na storage and diffusion kinetics of KVOPO4 compared to its Na counterpart NaVOPO4. KVOPO4 delivers an initial discharge capacity of 120 mAh g−1 (90% of the theoretical capacity) at 10 mA g−1 and retains 88% capacity after 150 cycles. It also delivers 52 mAh g−1 at 1 A g−1 and 91% capacity retention after 1000 cycles at 100 mA g−1, completely outperforming NaVOPO4.
期刊介绍:
The Journal of Physics-Energy is an interdisciplinary and fully open-access publication dedicated to setting the agenda for the identification and dissemination of the most exciting and significant advancements in all realms of energy-related research. Committed to the principles of open science, JPhys Energy is designed to maximize the exchange of knowledge between both established and emerging communities, thereby fostering a collaborative and inclusive environment for the advancement of energy research.