A Comparison of Traditional and Deep Learning Methods for Parameter Estimation of the Ornstein-Uhlenbeck Process

Jacob Fein-Ashley
{"title":"A Comparison of Traditional and Deep Learning Methods for Parameter Estimation of the Ornstein-Uhlenbeck Process","authors":"Jacob Fein-Ashley","doi":"arxiv-2404.11526","DOIUrl":null,"url":null,"abstract":"We consider the Ornstein-Uhlenbeck (OU) process, a stochastic process widely\nused in finance, physics, and biology. Parameter estimation of the OU process\nis a challenging problem. Thus, we review traditional tracking methods and\ncompare them with novel applications of deep learning to estimate the\nparameters of the OU process. We use a multi-layer perceptron to estimate the\nparameters of the OU process and compare its performance with traditional\nparameter estimation methods, such as the Kalman filter and maximum likelihood\nestimation. We find that the multi-layer perceptron can accurately estimate the\nparameters of the OU process given a large dataset of observed trajectories;\nhowever, traditional parameter estimation methods may be more suitable for\nsmaller datasets.","PeriodicalId":501294,"journal":{"name":"arXiv - QuantFin - Computational Finance","volume":"68 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Computational Finance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.11526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider the Ornstein-Uhlenbeck (OU) process, a stochastic process widely used in finance, physics, and biology. Parameter estimation of the OU process is a challenging problem. Thus, we review traditional tracking methods and compare them with novel applications of deep learning to estimate the parameters of the OU process. We use a multi-layer perceptron to estimate the parameters of the OU process and compare its performance with traditional parameter estimation methods, such as the Kalman filter and maximum likelihood estimation. We find that the multi-layer perceptron can accurately estimate the parameters of the OU process given a large dataset of observed trajectories; however, traditional parameter estimation methods may be more suitable for smaller datasets.
用于奥恩斯坦-乌伦贝克过程参数估计的传统方法与深度学习方法比较
我们考虑的是奥恩斯坦-乌伦贝克(OU)过程,这是一种广泛应用于金融、物理和生物学的随机过程。OU 过程的参数估计是一个具有挑战性的问题。因此,我们回顾了传统的跟踪方法,并将它们与深度学习在估计 OU 过程参数方面的新应用进行了比较。我们使用多层感知器来估计 OU 过程的参数,并将其性能与卡尔曼滤波和最大似然估计等传统参数估计方法进行比较。我们发现,在观测到大量轨迹数据集的情况下,多层感知器可以准确地估计OU过程的参数;然而,传统的参数估计方法可能更适用于较小的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信