Discrete Weber Inequalities and Related Maxwell Compactness for Hybrid Spaces over Polyhedral Partitions of Domains with General Topology

IF 4.6 Q2 MATERIALS SCIENCE, BIOMATERIALS
Simon Lemaire, Silvano Pitassi
{"title":"Discrete Weber Inequalities and Related Maxwell Compactness for Hybrid Spaces over Polyhedral Partitions of Domains with General Topology","authors":"Simon Lemaire, Silvano Pitassi","doi":"10.1007/s10208-024-09648-9","DOIUrl":null,"url":null,"abstract":"<p>We prove discrete versions of the first and second Weber inequalities on <span>\\(\\varvec{H}({{\\,\\mathrm{{\\textbf {curl}}}\\,}})\\cap \\varvec{H}({{\\,\\textrm{div}\\,}}_{\\eta })\\)</span>-like hybrid spaces spanned by polynomials attached to the faces and to the cells of a polyhedral mesh. The proven hybrid Weber inequalities are optimal in the sense that (i) they are formulated in terms of <span>\\(\\varvec{H}({{\\,\\mathrm{{\\textbf {curl}}}\\,}})\\)</span>- and <span>\\(\\varvec{H}({{\\,\\textrm{div}\\,}}_{\\eta })\\)</span>-like hybrid semi-norms designed so as to embed optimally (polynomially) consistent face penalty terms, and (ii) they are valid for face polynomials in the smallest possible stability-compatible spaces. Our results are valid on domains with general, possibly non-trivial topology. In a second part we also prove, within a general topological setting, related discrete Maxwell compactness properties.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10208-024-09648-9","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

We prove discrete versions of the first and second Weber inequalities on \(\varvec{H}({{\,\mathrm{{\textbf {curl}}}\,}})\cap \varvec{H}({{\,\textrm{div}\,}}_{\eta })\)-like hybrid spaces spanned by polynomials attached to the faces and to the cells of a polyhedral mesh. The proven hybrid Weber inequalities are optimal in the sense that (i) they are formulated in terms of \(\varvec{H}({{\,\mathrm{{\textbf {curl}}}\,}})\)- and \(\varvec{H}({{\,\textrm{div}\,}}_{\eta })\)-like hybrid semi-norms designed so as to embed optimally (polynomially) consistent face penalty terms, and (ii) they are valid for face polynomials in the smallest possible stability-compatible spaces. Our results are valid on domains with general, possibly non-trivial topology. In a second part we also prove, within a general topological setting, related discrete Maxwell compactness properties.

具有一般拓扑学的多面体分区域上混合空间的离散韦伯不等式及相关麦克斯韦紧凑性
我们证明了第一和第二个韦伯不等式的离散版本(\varvec{H}({{\,\mathrm{{textbf {curl}}\,}})\cap \varvec{H}({{\,\textrm{div}\,}}_{\eta }))--类似于多面体网格的面和单元的多项式所跨越的混合空间。已证明的混合韦伯不等式在以下意义上是最优的:(i) 它们是以\(\varvec{H}({{\,\mathrm{{textbf {curl}}}\,}})\)- 和\(\varvec{H}({{\,\textrm{div}\、类似于混合半矩形,旨在嵌入最优(多项式)一致的面惩罚项,并且(ii)它们对尽可能小的稳定性兼容空间中的面多项式有效。我们的结果适用于具有一般拓扑结构(可能是非三维拓扑结构)的域。在第二部分中,我们还在一般拓扑环境中证明了相关的离散麦克斯韦紧凑性属性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信