Huiyong Wang , Tianming Chen , Yong Ding , Yujue Wang , Changsong Yang
{"title":"Privacy-preserving multi-party logistic regression in cloud computing","authors":"Huiyong Wang , Tianming Chen , Yong Ding , Yujue Wang , Changsong Yang","doi":"10.1016/j.csi.2024.103857","DOIUrl":null,"url":null,"abstract":"<div><p>In recent years, machine learning techniques have been widely deployed in various fields. However, machine learning faces problems like high computation overhead, low training accuracy, and poor security due to data silos, privacy issues and communication limitations, especially in the environment of cloud computing. Logistic regression (LR) is a popular machine learning method used for prediction, while current LR algorithms suffer from high computation cost and communication burden due to interactions between users and cloud servers. In this paper, we propose a Privacy-Preserving Multi-party Logistic Regression (PPMLR) algorithm, which achieves privacy-preserving and non-interactive gradient descent regression training in machine learning. PPMLR uses the Distributed two Trapdoors Public-Key Cryptosystem (DT-PKC) as a main building block, which satisfies additive homomorphic encryption. Specifically, users go off-line after encrypting local private data, then the service provider (<span><math><mi>SP</mi></math></span>) trains the global logistic regression model by interacting with the cloud server (<span><math><mi>CS</mi></math></span>), so that the confidentiality and privacy of user’s private data can be guaranteed during the training process. We prove by detailed security proof that PPMLR guarantees data and model privacy. Finally, we conduct experiments on two popular medical datasets from the UCI machine learning repository. The experimental results show that PPMLR can conduct privacy-preserving training efficiently. Comparison with the stat-of-the-art Privacy-Preserving Logistic Regression Algorithm (PPLRA) shows that the model training time is reduced by about 4 times.</p></div>","PeriodicalId":50635,"journal":{"name":"Computer Standards & Interfaces","volume":"90 ","pages":"Article 103857"},"PeriodicalIF":4.1000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer Standards & Interfaces","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0920548924000266","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, machine learning techniques have been widely deployed in various fields. However, machine learning faces problems like high computation overhead, low training accuracy, and poor security due to data silos, privacy issues and communication limitations, especially in the environment of cloud computing. Logistic regression (LR) is a popular machine learning method used for prediction, while current LR algorithms suffer from high computation cost and communication burden due to interactions between users and cloud servers. In this paper, we propose a Privacy-Preserving Multi-party Logistic Regression (PPMLR) algorithm, which achieves privacy-preserving and non-interactive gradient descent regression training in machine learning. PPMLR uses the Distributed two Trapdoors Public-Key Cryptosystem (DT-PKC) as a main building block, which satisfies additive homomorphic encryption. Specifically, users go off-line after encrypting local private data, then the service provider () trains the global logistic regression model by interacting with the cloud server (), so that the confidentiality and privacy of user’s private data can be guaranteed during the training process. We prove by detailed security proof that PPMLR guarantees data and model privacy. Finally, we conduct experiments on two popular medical datasets from the UCI machine learning repository. The experimental results show that PPMLR can conduct privacy-preserving training efficiently. Comparison with the stat-of-the-art Privacy-Preserving Logistic Regression Algorithm (PPLRA) shows that the model training time is reduced by about 4 times.
期刊介绍:
The quality of software, well-defined interfaces (hardware and software), the process of digitalisation, and accepted standards in these fields are essential for building and exploiting complex computing, communication, multimedia and measuring systems. Standards can simplify the design and construction of individual hardware and software components and help to ensure satisfactory interworking.
Computer Standards & Interfaces is an international journal dealing specifically with these topics.
The journal
• Provides information about activities and progress on the definition of computer standards, software quality, interfaces and methods, at national, European and international levels
• Publishes critical comments on standards and standards activities
• Disseminates user''s experiences and case studies in the application and exploitation of established or emerging standards, interfaces and methods
• Offers a forum for discussion on actual projects, standards, interfaces and methods by recognised experts
• Stimulates relevant research by providing a specialised refereed medium.