Probabilistic hesitant fuzzy multiple criteria decision-making with triangular norm based similarity and entropy measures

B. Farhadinia , M. Abdollahian , U. Aickelin
{"title":"Probabilistic hesitant fuzzy multiple criteria decision-making with triangular norm based similarity and entropy measures","authors":"B. Farhadinia ,&nbsp;M. Abdollahian ,&nbsp;U. Aickelin","doi":"10.1016/j.dajour.2024.100465","DOIUrl":null,"url":null,"abstract":"<div><p>Existing probabilistic hesitant fuzzy set (PHFS) measures are constructed using two information measures: hesitancy and unwrapped probabilities. We argue that unifying these semantic terms in PHFS information theory is not logical. We introduce a new class of information measures for PHFSs, which address the logical wrapping of hesitant fuzzy sets (HFS) and probability. We propose several similarity measures for these sets that use the Triangular norm operator. We consider the relationship between measures of entropy and similarity and represent the axiomatic definition of PHFS entropy measures. Finally, we use case studies to demonstrate applications of these information measures. We describe two multiple-criteria decision-making algorithms. The last step is devoted to PHFS ranking procedures: one based on the score function of alternatives and the other based on the relative closeness of alternatives. This contribution describes new information measures and uses case studies to illustrate how they can be applied to decision-making processes.</p></div>","PeriodicalId":100357,"journal":{"name":"Decision Analytics Journal","volume":"11 ","pages":"Article 100465"},"PeriodicalIF":0.0000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2772662224000699/pdfft?md5=d052cd2d10e3112fe849bb77390b6925&pid=1-s2.0-S2772662224000699-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Decision Analytics Journal","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2772662224000699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing probabilistic hesitant fuzzy set (PHFS) measures are constructed using two information measures: hesitancy and unwrapped probabilities. We argue that unifying these semantic terms in PHFS information theory is not logical. We introduce a new class of information measures for PHFSs, which address the logical wrapping of hesitant fuzzy sets (HFS) and probability. We propose several similarity measures for these sets that use the Triangular norm operator. We consider the relationship between measures of entropy and similarity and represent the axiomatic definition of PHFS entropy measures. Finally, we use case studies to demonstrate applications of these information measures. We describe two multiple-criteria decision-making algorithms. The last step is devoted to PHFS ranking procedures: one based on the score function of alternatives and the other based on the relative closeness of alternatives. This contribution describes new information measures and uses case studies to illustrate how they can be applied to decision-making processes.

基于三角准则的相似性和熵测量的概率犹豫模糊多标准决策
现有的概率犹豫模糊集(PHFS)度量方法是利用两种信息度量方法构建的:犹豫性和未包裹概率。我们认为,在 PHFS 信息论中统一这些语义术语不符合逻辑。我们为 PHFS 引入了一类新的信息度量,解决了犹豫模糊集(HFS)和概率的逻辑封装问题。我们为这些集合提出了几种使用三角规范算子的相似性度量。我们考虑了熵和相似性度量之间的关系,并表示了 PHFS 熵度量的公理定义。最后,我们通过案例研究来展示这些信息度量的应用。我们介绍了两种多标准决策算法。最后一步是 PHFS 排序程序:一个基于备选方案的得分函数,另一个基于备选方案的相对接近度。本文介绍了新的信息测量方法,并通过案例研究说明了如何将其应用于决策过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信