Tristan Kistler, Evert W. Brascamp, Benjamin Basso, Piter Bijma, Florence Phocas
{"title":"Uncertainty in the mating strategy of honeybees causes bias and unreliability in the estimates of genetic parameters","authors":"Tristan Kistler, Evert W. Brascamp, Benjamin Basso, Piter Bijma, Florence Phocas","doi":"10.1186/s12711-024-00898-3","DOIUrl":null,"url":null,"abstract":"Breeding queens may be mated with drones that are produced by a single drone-producing queen (DPQ), or a group of sister-DPQs, but often only the dam of the DPQ(s) is reported in the pedigree. Furthermore, datasets may include colony phenotypes from DPQs that were open-mated at different locations, and thus to a heterogeneous drone population. Simulation was used to investigate the impact of the mating strategy and its modelling on the estimates of genetic parameters and genetic trends when the DPQs are treated in different ways in the statistical evaluation model. We quantified the bias and standard error of the estimates when breeding queens were mated to one DPQ or a group of DPQs, assuming that this information was known or not. We also investigated four alternative strategies to accommodate the phenotypes of open-mated DPQs in the genetic evaluation: excluding their phenotypes, adding a dummy pseudo-sire in the pedigree, or adding a non-genetic (fixed or random) effect to the statistical evaluation model to account for the origin of the mates. The most precise estimates of genetic parameters and genetic trends were obtained when breeding queens were mated with drones of single DPQs that are correctly assigned in the pedigree. However, when they were mated with drones from one or a group of DPQs, and this information was not known, erroneous assumptions led to considerable bias in these estimates. Furthermore, genetic variances were considerably overestimated when phenotypes of colonies from open-mated DPQs were adjusted for their mates by adding a dummy pseudo-sire in the pedigree for each subpopulation of open-mating drones. On the contrary, correcting for the heterogeneous drone population by adding a non-genetic effect in the evaluation model produced unbiased estimates. Knowing only the dam of the DPQ(s) used in each mating may lead to erroneous assumptions on how DPQs were used and severely bias the estimates of genetic parameters and trends. Thus, we recommend keeping track of DPQs in the pedigree, and not only of the dams of DPQ(s). Records from DPQ colonies with queens open-mated to a heterogeneous drone population can be integrated by adding non-genetic effects to the statistical evaluation model.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00898-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Breeding queens may be mated with drones that are produced by a single drone-producing queen (DPQ), or a group of sister-DPQs, but often only the dam of the DPQ(s) is reported in the pedigree. Furthermore, datasets may include colony phenotypes from DPQs that were open-mated at different locations, and thus to a heterogeneous drone population. Simulation was used to investigate the impact of the mating strategy and its modelling on the estimates of genetic parameters and genetic trends when the DPQs are treated in different ways in the statistical evaluation model. We quantified the bias and standard error of the estimates when breeding queens were mated to one DPQ or a group of DPQs, assuming that this information was known or not. We also investigated four alternative strategies to accommodate the phenotypes of open-mated DPQs in the genetic evaluation: excluding their phenotypes, adding a dummy pseudo-sire in the pedigree, or adding a non-genetic (fixed or random) effect to the statistical evaluation model to account for the origin of the mates. The most precise estimates of genetic parameters and genetic trends were obtained when breeding queens were mated with drones of single DPQs that are correctly assigned in the pedigree. However, when they were mated with drones from one or a group of DPQs, and this information was not known, erroneous assumptions led to considerable bias in these estimates. Furthermore, genetic variances were considerably overestimated when phenotypes of colonies from open-mated DPQs were adjusted for their mates by adding a dummy pseudo-sire in the pedigree for each subpopulation of open-mating drones. On the contrary, correcting for the heterogeneous drone population by adding a non-genetic effect in the evaluation model produced unbiased estimates. Knowing only the dam of the DPQ(s) used in each mating may lead to erroneous assumptions on how DPQs were used and severely bias the estimates of genetic parameters and trends. Thus, we recommend keeping track of DPQs in the pedigree, and not only of the dams of DPQ(s). Records from DPQ colonies with queens open-mated to a heterogeneous drone population can be integrated by adding non-genetic effects to the statistical evaluation model.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.