Turán Density of Long Tight Cycle Minus One Hyperedge

IF 1 2区 数学 Q1 MATHEMATICS
József Balogh, Haoran Luo
{"title":"Turán Density of Long Tight Cycle Minus One Hyperedge","authors":"József Balogh, Haoran Luo","doi":"10.1007/s00493-024-00099-y","DOIUrl":null,"url":null,"abstract":"<p>Denote by <span>\\({\\mathcal {C}}^-_{\\ell }\\)</span> the 3-uniform hypergraph obtained by removing one hyperedge from the tight cycle on <span>\\(\\ell \\)</span> vertices. It is conjectured that the Turán density of <span>\\({\\mathcal {C}}^-_{5}\\)</span> is 1/4. In this paper, we make progress toward this conjecture by proving that the Turán density of <span>\\({\\mathcal {C}}^-_{\\ell }\\)</span> is 1/4, for every sufficiently large <span>\\(\\ell \\)</span> not divisible by 3. One of the main ingredients of our proof is a forbidden-subhypergraph characterization of the hypergraphs, for which there exists a tournament on the same vertex set such that every hyperedge is a cyclic triangle in this tournament. A byproduct of our method is a human-checkable proof for the upper bound on the maximum number of almost similar triangles in a planar point set, which was recently proved using the method of flag algebras by Balogh, Clemen, and Lidický.</p>","PeriodicalId":50666,"journal":{"name":"Combinatorica","volume":null,"pages":null},"PeriodicalIF":1.0000,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Combinatorica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00493-024-00099-y","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Denote by \({\mathcal {C}}^-_{\ell }\) the 3-uniform hypergraph obtained by removing one hyperedge from the tight cycle on \(\ell \) vertices. It is conjectured that the Turán density of \({\mathcal {C}}^-_{5}\) is 1/4. In this paper, we make progress toward this conjecture by proving that the Turán density of \({\mathcal {C}}^-_{\ell }\) is 1/4, for every sufficiently large \(\ell \) not divisible by 3. One of the main ingredients of our proof is a forbidden-subhypergraph characterization of the hypergraphs, for which there exists a tournament on the same vertex set such that every hyperedge is a cyclic triangle in this tournament. A byproduct of our method is a human-checkable proof for the upper bound on the maximum number of almost similar triangles in a planar point set, which was recently proved using the method of flag algebras by Balogh, Clemen, and Lidický.

Abstract Image

减去一个海波里奇的长密周期的图兰密度
用 \({\mathcal {C}}^-_{\ell }\ 表示通过从 \(\ell \) 顶点上的紧密循环中移除一个超边得到的 3-Uniform 超图。我们猜想 \({\mathcal {C}}^-_{5}\) 的图兰密度是 1/4 。在本文中,我们通过证明对于每一个不被 3 整除的足够大的\(\ell \),\({\mathcal {C}^-_{\ell }\) 的图兰密度是 1/4,从而在实现这一猜想方面取得了进展。我们的证明的主要成分之一是超图的一个禁止子超图特征,对于超图来说,在同一个顶点集上存在一个锦标赛,使得每个超边都是这个锦标赛中的一个循环三角形。我们方法的一个副产品是一个平面点集中几乎相似三角形的最大数量上限的可人工检验证明,最近巴洛格、克莱门和利迪基使用旗布尔方法证明了这一点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Combinatorica
Combinatorica 数学-数学
CiteScore
1.90
自引率
0.00%
发文量
45
审稿时长
>12 weeks
期刊介绍: COMBINATORICA publishes research papers in English in a variety of areas of combinatorics and the theory of computing, with particular emphasis on general techniques and unifying principles. Typical but not exclusive topics covered by COMBINATORICA are - Combinatorial structures (graphs, hypergraphs, matroids, designs, permutation groups). - Combinatorial optimization. - Combinatorial aspects of geometry and number theory. - Algorithms in combinatorics and related fields. - Computational complexity theory. - Randomization and explicit construction in combinatorics and algorithms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信