CHARACTERISATION OF PRIMES DIVIDING THE INDEX OF A CLASS OF POLYNOMIALS AND ITS APPLICATIONS

Pub Date : 2024-04-01 DOI:10.1017/s0004972724000182
ANUJ JAKHAR
{"title":"CHARACTERISATION OF PRIMES DIVIDING THE INDEX OF A CLASS OF POLYNOMIALS AND ITS APPLICATIONS","authors":"ANUJ JAKHAR","doi":"10.1017/s0004972724000182","DOIUrl":null,"url":null,"abstract":"<p>Let <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline1.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}_{K}$</span></span></img></span></span> denote the ring of algebraic integers of an algebraic number field <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$K = {\\mathbb Q}(\\theta )$</span></span></img></span></span>, where <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\theta $</span></span></img></span></span> is a root of a monic irreducible polynomial <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$f(x) = x^n + a(bx+c)^m \\in {\\mathbb {Z}}[x]$</span></span></img></span></span>, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$1\\leq m&lt;n$</span></span></img></span></span>. We say <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)$</span></span></img></span></span> is monogenic if <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\{1, \\theta , \\ldots , \\theta ^{n-1}\\}$</span></span></img></span></span> is a basis for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline8.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}_K$</span></span></img></span></span>. We give necessary and sufficient conditions involving only <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$a, b, c, m, n$</span></span></img></span></span> for <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$f(x)$</span></span></img></span></span> to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline11.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}[\\theta ]$</span></span></img></span></span> in <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline12.png\"><span data-mathjax-type=\"texmath\"><span>${\\mathbb {Z}}_K$</span></span></img></span></span>. As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240328105942060-0650:S0004972724000182:S0004972724000182_inline13.png\"><span data-mathjax-type=\"texmath\"><span>$S_n$</span></span></img></span></span>, the symmetric group on <span>n</span> letters.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0004972724000182","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Let Abstract Image${\mathbb {Z}}_{K}$ denote the ring of algebraic integers of an algebraic number field Abstract Image$K = {\mathbb Q}(\theta )$, where Abstract Image$\theta $ is a root of a monic irreducible polynomial Abstract Image$f(x) = x^n + a(bx+c)^m \in {\mathbb {Z}}[x]$, Abstract Image$1\leq m<n$. We say Abstract Image$f(x)$ is monogenic if Abstract Image$\{1, \theta , \ldots , \theta ^{n-1}\}$ is a basis for Abstract Image${\mathbb {Z}}_K$. We give necessary and sufficient conditions involving only Abstract Image$a, b, c, m, n$ for Abstract Image$f(x)$ to be monogenic. Moreover, we characterise all the primes dividing the index of the subgroup Abstract Image${\mathbb {Z}}[\theta ]$ in Abstract Image${\mathbb {Z}}_K$. As an application, we also provide a class of monogenic polynomials having non square-free discriminant and Galois group Abstract Image$S_n$, the symmetric group on n letters.

分享
查看原文
划分一类多项式指数的素数的特征及其应用
让 ${\mathbb {Z}}_{K}$ 表示代数数域 $K = {\mathbb Q}(\theta )$ 的代数整数环,其中 $\theta $ 是在 {\mathbb {Z}}[x]$, $1\leq m<n$ 中的一元不可约多项式 $f(x) = x^n + a(bx+c)^m 的根。如果 $\{1, \theta , \ldots , \theta ^{n-1}\}$ 是 ${mathbb {Z}}_K$ 的基,我们就说 $f(x)$ 是单源的。我们给出了只涉及 $a,b,c,m,n$ 的 $f(x)$ 单调性的必要条件和充分条件。此外,我们还描述了 ${mathbb {Z}}[\theta ]$ 在 ${mathbb {Z}}_K$ 中划分子群 ${mathbb {Z}}[\theta ]$ 索引的所有素数的特征。作为应用,我们还提供了一类具有非无平方判别式和伽罗瓦群 $S_n$(n 个字母上的对称群)的单元多项式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信