$$L\log L$$ Type Estimates for Commutators of Fractional Integral Operators on the p-Adic Vector Space

IF 0.7 4区 数学 Q2 MATHEMATICS
YunPeng Chang, LiangJuan Yu, LinQi Sun, HuangZhi Xia
{"title":"$$L\\log L$$ Type Estimates for Commutators of Fractional Integral Operators on the p-Adic Vector Space","authors":"YunPeng Chang, LiangJuan Yu, LinQi Sun, HuangZhi Xia","doi":"10.1007/s11785-024-01514-4","DOIUrl":null,"url":null,"abstract":"<p>In this paper, the main aim is to prove the weak type <span>\\(L \\log L\\)</span> estimates for commutators of fractional integral operators and the higher order in the context of the <i>p</i>-adic version of Lebesgue spaces, where the symbols of the commutators belong to the <i>p</i>-adic version of <span>\\({\\text {BMO}}\\)</span> space. In addition, we also establish the estimates of the sharp function on the <i>p</i>-adic vector space.</p>","PeriodicalId":50654,"journal":{"name":"Complex Analysis and Operator Theory","volume":"155 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Complex Analysis and Operator Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11785-024-01514-4","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, the main aim is to prove the weak type \(L \log L\) estimates for commutators of fractional integral operators and the higher order in the context of the p-adic version of Lebesgue spaces, where the symbols of the commutators belong to the p-adic version of \({\text {BMO}}\) space. In addition, we also establish the estimates of the sharp function on the p-adic vector space.

p-Adic 向量空间上分式积分算子的换元数的 $$L\log L$$ 型估计值
本文的主要目的是在 p-adic 版本的 Lebesgue 空间的背景下,证明分数积分算子换元的弱型 \(L \log L\) 估计和高阶估计,其中换元的符号属于 p-adic 版本的 \({\text {BMO}}\)空间。此外,我们还建立了 p-adic 向量空间上尖锐函数的估计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
107
审稿时长
3 months
期刊介绍: Complex Analysis and Operator Theory (CAOT) is devoted to the publication of current research developments in the closely related fields of complex analysis and operator theory as well as in applications to system theory, harmonic analysis, probability, statistics, learning theory, mathematical physics and other related fields. Articles using the theory of reproducing kernel spaces are in particular welcomed.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信