{"title":"Inference in Coarsened Time Series via Generalized Method of Moments","authors":"Man Fai Ip, Kin Wai Chan","doi":"10.1111/jtsa.12740","DOIUrl":null,"url":null,"abstract":"<p>We study statistical inference procedures in coarsened time series through the generalized method of moments. A new model for the coarsened time series via multiple potential outcomes is proposed. It can be naturally extended for inferring multi-variate coarsened time series. We show that this framework generates a general class of estimators. It neatly generalizes the classical Horvitz–Thompson estimator for handling coarsened time series data. Asymptotic properties, including consistency and limiting distribution, of the proposed estimators are investigated. Estimators of the optimal weight matrix and the long-run covariance matrix are also derived. In particular, confidence intervals of the mean function of the potential outcome as a function of coarsening index can be constructed. A real-data application on air quality in the USA is investigated.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/jtsa.12740","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/jtsa.12740","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We study statistical inference procedures in coarsened time series through the generalized method of moments. A new model for the coarsened time series via multiple potential outcomes is proposed. It can be naturally extended for inferring multi-variate coarsened time series. We show that this framework generates a general class of estimators. It neatly generalizes the classical Horvitz–Thompson estimator for handling coarsened time series data. Asymptotic properties, including consistency and limiting distribution, of the proposed estimators are investigated. Estimators of the optimal weight matrix and the long-run covariance matrix are also derived. In particular, confidence intervals of the mean function of the potential outcome as a function of coarsening index can be constructed. A real-data application on air quality in the USA is investigated.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.