{"title":"A Bakry-Émery Approach to Lipschitz Transportation on Manifolds","authors":"Pablo López-Rivera","doi":"10.1007/s11118-024-10138-4","DOIUrl":null,"url":null,"abstract":"<p>On weighted Riemannian manifolds we prove the existence of globally Lipschitz transport maps between the weight (probability) measure and log-Lipschitz perturbations of it, via Kim and Milman’s diffusion transport map, assuming that the curvature-dimension condition <span>\\(\\varvec{\\textrm{CD}(\\rho _{1}, \\infty )}\\)</span> holds, as well as a second order version of it, namely <span>\\(\\varvec{\\Gamma _{3} \\ge \\rho _{2} \\Gamma _{2}}\\)</span>. We get new results as corollaries to this result, as the preservation of Poincaré’s inequality for the exponential measure on <span>\\(\\varvec{(0,+\\infty )}\\)</span> when perturbed by a log-Lipschitz potential and a new growth estimate for the Monge map pushing forward the gamma distribution on <span>\\(\\varvec{(0,+\\infty )}\\)</span> (then getting as a particular case the exponential one), via Laguerre’s generator.</p>","PeriodicalId":49679,"journal":{"name":"Potential Analysis","volume":"440 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Potential Analysis","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11118-024-10138-4","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
On weighted Riemannian manifolds we prove the existence of globally Lipschitz transport maps between the weight (probability) measure and log-Lipschitz perturbations of it, via Kim and Milman’s diffusion transport map, assuming that the curvature-dimension condition \(\varvec{\textrm{CD}(\rho _{1}, \infty )}\) holds, as well as a second order version of it, namely \(\varvec{\Gamma _{3} \ge \rho _{2} \Gamma _{2}}\). We get new results as corollaries to this result, as the preservation of Poincaré’s inequality for the exponential measure on \(\varvec{(0,+\infty )}\) when perturbed by a log-Lipschitz potential and a new growth estimate for the Monge map pushing forward the gamma distribution on \(\varvec{(0,+\infty )}\) (then getting as a particular case the exponential one), via Laguerre’s generator.
期刊介绍:
The journal publishes original papers dealing with potential theory and its applications, probability theory, geometry and functional analysis and in particular estimations of the solutions of elliptic and parabolic equations; analysis of semi-groups, resolvent kernels, harmonic spaces and Dirichlet forms; Markov processes, Markov kernels, stochastic differential equations, diffusion processes and Levy processes; analysis of diffusions, heat kernels and resolvent kernels on fractals; infinite dimensional analysis, Gaussian analysis, analysis of infinite particle systems, of interacting particle systems, of Gibbs measures, of path and loop spaces; connections with global geometry, linear and non-linear analysis on Riemannian manifolds, Lie groups, graphs, and other geometric structures; non-linear or semilinear generalizations of elliptic or parabolic equations and operators; harmonic analysis, ergodic theory, dynamical systems; boundary value problems, Martin boundaries, Poisson boundaries, etc.