Large Péclet number forced convection from a circular wire in a uniform stream: hybrid approximations at small Reynolds numbers

IF 2.3 4区 数学 Q1 MATHEMATICS, APPLIED
Ehud Yariv
{"title":"Large Péclet number forced convection from a circular wire in a uniform stream: hybrid approximations at small Reynolds numbers","authors":"Ehud Yariv","doi":"10.1017/s0956792524000147","DOIUrl":null,"url":null,"abstract":"<p>We consider heat or mass transport from a circular cylinder under a uniform crossflow at small Reynolds numbers, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline1.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}\\ll 1$</span></span></img></span></span>. This problem has been thwarted in the past by limitations inherent in the classical analyses of the singular flow problem, which have used asymptotic expansions in inverse powers of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline2.png\"><span data-mathjax-type=\"texmath\"><span>$\\log \\mathrm{Re}$</span></span></img></span></span>. We here make use of the hybrid approximation of Kropinski, Ward &amp; Keller [(1995) SIAM <span>J. Appl. Math.</span> <span>55</span>, 1484], based upon a robust asymptotic expansion in powers of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline3.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>. In that approximation, the “inner” streamfunction is provided by the product of a pre-factor <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline4.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span>, a slowly varying function of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline5.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>, with a <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline6.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>-independent “canonical” solution of a simple mathematical form. The pre-factor, in turn, is determined as an implicit function of <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline7.png\"><span data-mathjax-type=\"texmath\"><span>$\\log \\mathrm{Re}$</span></span></img></span></span> via asymptotic matching with a numerical solution of the nonlinear single-scaled “outer” problem, where the cylinder appears as a point singularity. We exploit the hybrid approximation to analyse the transport problem in the limit of large Péclet number, <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline8.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Pe}\\gg 1$</span></span></img></span></span>. In that limit, transport is restricted to a narrow boundary layer about the cylinder surface – a province contained within the inner region of the flow problem. With <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline9.png\"><span data-mathjax-type=\"texmath\"><span>$S$</span></span></img></span></span> appearing as a parameter, a similarity solution is readily constructed for the boundary-layer problem. It provides the Nusselt number as <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline10.png\"><span data-mathjax-type=\"texmath\"><span>$0.5799(S\\,\\mathrm{Pe})^{1/3}$</span></span></img></span></span>. This asymptotic prediction is in remarkably close agreement with that of the numerical solution of the exact problem [Dennis, Hudson &amp; Smith (1968) <span>Phys. Fluids</span> <span>11</span>, 933] even for moderate <span><span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240415115644043-0058:S0956792524000147:S0956792524000147_inline11.png\"><span data-mathjax-type=\"texmath\"><span>$\\mathrm{Re}$</span></span></img></span></span>-values.</p>","PeriodicalId":51046,"journal":{"name":"European Journal of Applied Mathematics","volume":"122 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/s0956792524000147","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

We consider heat or mass transport from a circular cylinder under a uniform crossflow at small Reynolds numbers, Abstract Image$\mathrm{Re}\ll 1$. This problem has been thwarted in the past by limitations inherent in the classical analyses of the singular flow problem, which have used asymptotic expansions in inverse powers of Abstract Image$\log \mathrm{Re}$. We here make use of the hybrid approximation of Kropinski, Ward & Keller [(1995) SIAM J. Appl. Math. 55, 1484], based upon a robust asymptotic expansion in powers of Abstract Image$\mathrm{Re}$. In that approximation, the “inner” streamfunction is provided by the product of a pre-factor Abstract Image$S$, a slowly varying function of Abstract Image$\mathrm{Re}$, with a Abstract Image$\mathrm{Re}$-independent “canonical” solution of a simple mathematical form. The pre-factor, in turn, is determined as an implicit function of Abstract Image$\log \mathrm{Re}$ via asymptotic matching with a numerical solution of the nonlinear single-scaled “outer” problem, where the cylinder appears as a point singularity. We exploit the hybrid approximation to analyse the transport problem in the limit of large Péclet number, Abstract Image$\mathrm{Pe}\gg 1$. In that limit, transport is restricted to a narrow boundary layer about the cylinder surface – a province contained within the inner region of the flow problem. With Abstract Image$S$ appearing as a parameter, a similarity solution is readily constructed for the boundary-layer problem. It provides the Nusselt number as Abstract Image$0.5799(S\,\mathrm{Pe})^{1/3}$. This asymptotic prediction is in remarkably close agreement with that of the numerical solution of the exact problem [Dennis, Hudson & Smith (1968) Phys. Fluids 11, 933] even for moderate Abstract Image$\mathrm{Re}$-values.

均匀流中圆导线的大佩克莱特数强制对流:小雷诺数下的混合近似值
我们考虑的是在小雷诺数($\mathrm{Re}\ll 1$)条件下,在均匀横流作用下圆柱体的热量或质量传输问题。过去,由于对奇异流动问题的经典分析中固有的局限性,这个问题一直受到阻碍,因为经典分析使用了$log \mathrm{Re}$的反幂的渐近展开。在此,我们使用 Kropinski, Ward & Keller 的混合近似[(1995) SIAM J. Appl.在这种近似方法中,"内部 "流函数是由前因$S$(一个缓慢变化的$\mathrm{Re}$函数)与一个独立于$\mathrm{Re}$的、数学形式简单的 "典型 "解的乘积提供的。通过与非线性单尺度 "外部 "问题数值解的渐近匹配,预因子反过来被确定为$log \mathrm{Re}$的隐含函数,其中圆柱体作为一个点奇点出现。我们利用混合近似来分析大佩克莱特数($\mathrm{Pe}\gg 1$)极限下的传输问题。在这一极限中,输运被限制在圆柱体表面的狭窄边界层中--这一区域包含在流动问题的内部区域中。以 $S$ 作为参数,很容易构建出边界层问题的相似解。它提供的努塞尔特数为 $0.5799(S\,\mathrm{Pe})^{1/3}$。这一渐近预测与精确问题的数值解[Dennis, Hudson & Smith (1968) Phys. Fluids 11, 933]非常接近,即使是中等的 $\mathrm{Re}$ 值也是如此。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
4.70
自引率
0.00%
发文量
31
审稿时长
>12 weeks
期刊介绍: Since 2008 EJAM surveys have been expanded to cover Applied and Industrial Mathematics. Coverage of the journal has been strengthened in probabilistic applications, while still focusing on those areas of applied mathematics inspired by real-world applications, and at the same time fostering the development of theoretical methods with a broad range of applicability. Survey papers contain reviews of emerging areas of mathematics, either in core areas or with relevance to users in industry and other disciplines. Research papers may be in any area of applied mathematics, with special emphasis on new mathematical ideas, relevant to modelling and analysis in modern science and technology, and the development of interesting mathematical methods of wide applicability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信