A uniqueness theory on determining the nonlinear energy potential in phase-field system

Tianhao Ni, Jun Lai
{"title":"A uniqueness theory on determining the nonlinear energy potential in phase-field system","authors":"Tianhao Ni, Jun Lai","doi":"arxiv-2404.00587","DOIUrl":null,"url":null,"abstract":"The phase-field system is a nonlinear model that has significant applications\nin material sciences. In this paper, we are concerned with the uniqueness of\ndetermining the nonlinear energy potential in a phase-field system consisted of\nCahn-Hilliard and Allen-Cahn equations. This system finds widespread\napplications in the development of alloys engineered to withstand extreme\ntemperatures and pressures. The goal is to reconstruct the nonlinear energy\npotential through the measurements of concentration fields. We establish the\nlocal well-posedness of the phase-field system based on the implicit function\ntheorem in Banach spaces. Both of the uniqueness results for recovering\ntime-independent and time-dependent energy potential functions are provided\nthrough the higher order linearization technique.","PeriodicalId":501275,"journal":{"name":"arXiv - PHYS - Mathematical Physics","volume":"97 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Mathematical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.00587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The phase-field system is a nonlinear model that has significant applications in material sciences. In this paper, we are concerned with the uniqueness of determining the nonlinear energy potential in a phase-field system consisted of Cahn-Hilliard and Allen-Cahn equations. This system finds widespread applications in the development of alloys engineered to withstand extreme temperatures and pressures. The goal is to reconstruct the nonlinear energy potential through the measurements of concentration fields. We establish the local well-posedness of the phase-field system based on the implicit function theorem in Banach spaces. Both of the uniqueness results for recovering time-independent and time-dependent energy potential functions are provided through the higher order linearization technique.
确定相场系统中非线性能量势的唯一性理论
相场系统是一种非线性模型,在材料科学领域有着重要的应用。在本文中,我们关注的是确定由卡恩-希利亚德方程和艾伦-卡恩方程组成的相场系统中非线性能量势的唯一性。该系统广泛应用于开发可承受极端温度和压力的合金。我们的目标是通过测量浓度场来重建非线性能量势。我们基于巴拿赫空间中的隐函数定理,建立了相场系统的局部好求性。通过高阶线性化技术提供了恢复与时间无关和与时间有关的能量势函数的唯一性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信