RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data

Yupeng Cao, Zhi Chen, Qingyun Pei, Fabrizio Dimino, Lorenzo Ausiello, Prashant Kumar, K. P. Subbalakshmi, Papa Momar Ndiaye
{"title":"RiskLabs: Predicting Financial Risk Using Large Language Model Based on Multi-Sources Data","authors":"Yupeng Cao, Zhi Chen, Qingyun Pei, Fabrizio Dimino, Lorenzo Ausiello, Prashant Kumar, K. P. Subbalakshmi, Papa Momar Ndiaye","doi":"arxiv-2404.07452","DOIUrl":null,"url":null,"abstract":"The integration of Artificial Intelligence (AI) techniques, particularly\nlarge language models (LLMs), in finance has garnered increasing academic\nattention. Despite progress, existing studies predominantly focus on tasks like\nfinancial text summarization, question-answering (Q$\\&$A), and stock movement\nprediction (binary classification), with a notable gap in the application of\nLLMs for financial risk prediction. Addressing this gap, in this paper, we\nintroduce \\textbf{RiskLabs}, a novel framework that leverages LLMs to analyze\nand predict financial risks. RiskLabs uniquely combines different types of\nfinancial data, including textual and vocal information from Earnings\nConference Calls (ECCs), market-related time series data, and contextual news\ndata surrounding ECC release dates. Our approach involves a multi-stage\nprocess: initially extracting and analyzing ECC data using LLMs, followed by\ngathering and processing time-series data before the ECC dates to model and\nunderstand risk over different timeframes. Using multimodal fusion techniques,\nRiskLabs amalgamates these varied data features for comprehensive multi-task\nfinancial risk prediction. Empirical experiment results demonstrate RiskLab's\neffectiveness in forecasting both volatility and variance in financial markets.\nThrough comparative experiments, we demonstrate how different data sources\ncontribute to financial risk assessment and discuss the critical role of LLMs\nin this context. Our findings not only contribute to the AI in finance\napplication but also open new avenues for applying LLMs in financial risk\nassessment.","PeriodicalId":501128,"journal":{"name":"arXiv - QuantFin - Risk Management","volume":"2011 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Risk Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.07452","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The integration of Artificial Intelligence (AI) techniques, particularly large language models (LLMs), in finance has garnered increasing academic attention. Despite progress, existing studies predominantly focus on tasks like financial text summarization, question-answering (Q$\&$A), and stock movement prediction (binary classification), with a notable gap in the application of LLMs for financial risk prediction. Addressing this gap, in this paper, we introduce \textbf{RiskLabs}, a novel framework that leverages LLMs to analyze and predict financial risks. RiskLabs uniquely combines different types of financial data, including textual and vocal information from Earnings Conference Calls (ECCs), market-related time series data, and contextual news data surrounding ECC release dates. Our approach involves a multi-stage process: initially extracting and analyzing ECC data using LLMs, followed by gathering and processing time-series data before the ECC dates to model and understand risk over different timeframes. Using multimodal fusion techniques, RiskLabs amalgamates these varied data features for comprehensive multi-task financial risk prediction. Empirical experiment results demonstrate RiskLab's effectiveness in forecasting both volatility and variance in financial markets. Through comparative experiments, we demonstrate how different data sources contribute to financial risk assessment and discuss the critical role of LLMs in this context. Our findings not only contribute to the AI in finance application but also open new avenues for applying LLMs in financial risk assessment.
RiskLabs:利用基于多源数据的大型语言模型预测金融风险
人工智能(AI)技术,尤其是大型语言模型(LLMs)在金融领域的应用已引起越来越多学术界的关注。尽管取得了进展,但现有的研究主要集中在金融文本摘要、问题解答(Q$\&$A)和股票走势预测(二元分类)等任务上,在应用 LLMs 进行金融风险预测方面存在明显的不足。针对这一空白,我们在本文中介绍了一个利用 LLMs 分析和预测金融风险的新颖框架--RiskLabs。RiskLabs 独特地结合了不同类型的金融数据,包括来自收益电话会议(ECC)的文字和声音信息、与市场相关的时间序列数据以及围绕 ECC 发布日期的上下文新闻数据。我们的方法涉及一个多阶段过程:首先使用 LLMs 提取和分析 ECC 数据,然后收集和处理 ECC 日期前的时间序列数据,以模拟和理解不同时间框架内的风险。利用多模态融合技术,RiskLabs 将这些不同的数据特征整合在一起,进行全面的多任务金融风险预测。实证实验结果表明,RiskLab 能够有效预测金融市场的波动性和方差。通过对比实验,我们展示了不同数据源如何为金融风险评估做出贡献,并讨论了 LLMs 在此背景下的关键作用。我们的研究结果不仅为人工智能在金融领域的应用做出了贡献,还为将 LLMs 应用于金融风险评估开辟了新的途径。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信