Unfolding and injectivity of the Kudla–Millson lift of genus 1

IF 1 3区 数学 Q1 MATHEMATICS
Riccardo Zuffetti
{"title":"Unfolding and injectivity of the Kudla–Millson lift of genus 1","authors":"Riccardo Zuffetti","doi":"10.1007/s00209-024-03479-8","DOIUrl":null,"url":null,"abstract":"<p>We unfold the theta integrals defining the Kudla–Millson lift of genus 1 associated to even lattices of signature (<i>b</i>, 2), where <span>\\(b&gt;2\\)</span>. This enables us to compute the Fourier expansion of such defining integrals and prove the injectivity of the Kudla–Millson lift. Although the latter result has been already proved in [5], our new procedure has the advantage of paving the ground for a strategy to prove the injectivity of the lift also for the cases of general signature and of genus greater than 1.</p>","PeriodicalId":18278,"journal":{"name":"Mathematische Zeitschrift","volume":"55 1","pages":""},"PeriodicalIF":1.0000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematische Zeitschrift","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00209-024-03479-8","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We unfold the theta integrals defining the Kudla–Millson lift of genus 1 associated to even lattices of signature (b, 2), where \(b>2\). This enables us to compute the Fourier expansion of such defining integrals and prove the injectivity of the Kudla–Millson lift. Although the latter result has been already proved in [5], our new procedure has the advantage of paving the ground for a strategy to prove the injectivity of the lift also for the cases of general signature and of genus greater than 1.

属 1 的库德拉-米尔森提升的展开和注入性
我们展开了定义与签名为(b, 2)的偶数网格(其中 \(b>2\)相关的属1的库德拉-米尔森提升的θ积分。这使我们能够计算这种定义积分的傅里叶展开,并证明库德拉-米尔森提升的注入性。虽然后一结果已在 [5] 中证明,但我们的新程序的优势在于为证明一般符号和属大于 1 的情况下的提升的可注入性铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
236
审稿时长
3-6 weeks
期刊介绍: "Mathematische Zeitschrift" is devoted to pure and applied mathematics. Reviews, problems etc. will not be published.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信