Abelian covers and the second fundamental form

IF 0.5 4区 数学 Q3 MATHEMATICS
Paola Frediani
{"title":"Abelian covers and the second fundamental form","authors":"Paola Frediani","doi":"10.1007/s00229-024-01556-0","DOIUrl":null,"url":null,"abstract":"<p>We give some conditions on a family of abelian covers of <span>\\({\\mathbb P}^1\\)</span> of genus <i>g</i> curves, that ensure that the family yields a subvariety of <span>\\({\\mathsf A}_g\\)</span> which is not totally geodesic, hence it is not Shimura. As a consequence, we show that for any abelian group <i>G</i>, there exists an integer <i>M</i> which only depends on <i>G</i> such that if <span>\\(g &gt;M\\)</span>, then the family yields a subvariety of <span>\\({\\mathsf A}_g\\)</span> which is not totally geodesic. We prove then analogous results for families of abelian covers of <span>\\({\\tilde{C}}_t \\rightarrow {\\mathbb P}^1 = {\\tilde{C}}_t/{\\tilde{G}}\\)</span> with an abelian Galois group <span>\\({\\tilde{G}}\\)</span> of even order, proving that under some conditions, if <span>\\(\\sigma \\in {\\tilde{G}}\\)</span> is an involution, the family of Pryms associated with the covers <span>\\({\\tilde{C}}_t \\rightarrow C_t= {\\tilde{C}}_t/\\langle \\sigma \\rangle \\)</span> yields a subvariety of <span>\\({\\mathsf A}_{p}^{\\delta }\\)</span> which is not totally geodesic. As a consequence, we show that if <span>\\({\\tilde{G}}=(\\mathbb Z/N\\mathbb Z)^m\\)</span> with <i>N</i> even, and <span>\\(\\sigma \\)</span> is an involution in <span>\\({\\tilde{G}}\\)</span>, there exists an integer <i>M</i>(<i>N</i>) which only depends on <i>N</i> such that, if <span>\\({\\tilde{g}}= g({\\tilde{C}}_t) &gt; M(N)\\)</span>, then the subvariety of the Prym locus in <span>\\({{\\mathsf A}}^{\\delta }_{p}\\)</span> induced by any such family is not totally geodesic (hence it is not Shimura).</p>","PeriodicalId":49887,"journal":{"name":"Manuscripta Mathematica","volume":"2011 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Manuscripta Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01556-0","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We give some conditions on a family of abelian covers of \({\mathbb P}^1\) of genus g curves, that ensure that the family yields a subvariety of \({\mathsf A}_g\) which is not totally geodesic, hence it is not Shimura. As a consequence, we show that for any abelian group G, there exists an integer M which only depends on G such that if \(g >M\), then the family yields a subvariety of \({\mathsf A}_g\) which is not totally geodesic. We prove then analogous results for families of abelian covers of \({\tilde{C}}_t \rightarrow {\mathbb P}^1 = {\tilde{C}}_t/{\tilde{G}}\) with an abelian Galois group \({\tilde{G}}\) of even order, proving that under some conditions, if \(\sigma \in {\tilde{G}}\) is an involution, the family of Pryms associated with the covers \({\tilde{C}}_t \rightarrow C_t= {\tilde{C}}_t/\langle \sigma \rangle \) yields a subvariety of \({\mathsf A}_{p}^{\delta }\) which is not totally geodesic. As a consequence, we show that if \({\tilde{G}}=(\mathbb Z/N\mathbb Z)^m\) with N even, and \(\sigma \) is an involution in \({\tilde{G}}\), there exists an integer M(N) which only depends on N such that, if \({\tilde{g}}= g({\tilde{C}}_t) > M(N)\), then the subvariety of the Prym locus in \({{\mathsf A}}^{\delta }_{p}\) induced by any such family is not totally geodesic (hence it is not Shimura).

Abstract Image

阿贝尔封面和第二基本形式
我们给出了关于 g 属曲线的 \({\mathbb P}^1\) 的无边际覆盖的族的一些条件,这些条件确保了该族产生的 \({\mathsf A}_g\) 的子域不是完全测地的,因此它不是 Shimura。因此,我们证明了对于任何无性群 G,都存在一个只取决于 G 的整数 M,使得如果 \(g>M\),那么这个族会产生一个不是完全测地线的 \({\mathsf A}_g\) 子域。然后我们证明了具有偶阶无边伽罗瓦群 \({\tilde{C}}_t \rightarrow {\mathbb P}^1 = {\tilde{C}}_t/{\tilde{G}}\) 的无边覆盖的族的类似结果,证明了在某些条件下:如果 \(\sigma \in {\tilde{G}}\) 是一个卷积,那么与覆盖 \({\tilde{C}}_t \rightarrow C_t= {\tilde{C}}_t/\langle \sigma \rangle \) 相关的 Pryms 族会产生一个不完全是大地的 \({\mathsf A}_{p}^{\delta }\) 子域。因此,我们证明如果 \({\tilde{G}}=(\mathbb Z/N\mathbb Z)^m\) 的 N 是偶数,并且 \(\sigma \) 是 \({\tilde{G}}) 中的一个反卷,那么存在一个只取决于 N 的整数 M(N),使得如果 \({\tilde{g}}= g({\tilde{C}}_t) >;M(N)\),那么任何这样的族诱导的 \({{\mathsf A}}^{\delta }_{p}\)中的 Prym 所在子域都不是完全测地的(因此它不是 Shimura)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Manuscripta Mathematica
Manuscripta Mathematica 数学-数学
CiteScore
1.40
自引率
0.00%
发文量
86
审稿时长
6-12 weeks
期刊介绍: manuscripta mathematica was founded in 1969 to provide a forum for the rapid communication of advances in mathematical research. Edited by an international board whose members represent a wide spectrum of research interests, manuscripta mathematica is now recognized as a leading source of information on the latest mathematical results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信