Hitchin map on even very stable upward flows

IF 0.6 4区 数学 Q3 MATHEMATICS
Miguel González, Tamás Hausel
{"title":"Hitchin map on even very stable upward flows","authors":"Miguel González, Tamás Hausel","doi":"10.1142/s0129167x2441009x","DOIUrl":null,"url":null,"abstract":"<p>We define even very stable Higgs bundles and study the Hitchin map restricted to their upward flows. In the <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mstyle><mtext mathvariant=\"normal\">GL</mtext></mstyle></mrow><mrow><mi>n</mi></mrow></msub></math></span><span></span> case, we classify the type <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mn>1</mn><mo stretchy=\"false\">)</mo></math></span><span></span> examples, and find that they are governed by a root system formed by the roots of even height. We discuss how the spectrum of equivariant cohomology of real and quaternionic Grassmannians, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mn>4</mn><mi>n</mi></math></span><span></span>-spheres and the real Cayley plane appear to describe the Hitchin map on even cominuscule upward flows. The even upward flows in question are the same as upward flows in Higgs bundle moduli spaces for quasi-split inner real forms. The latter spaces have been pioneered by Oscar García-Prada and his collaborators.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x2441009x","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We define even very stable Higgs bundles and study the Hitchin map restricted to their upward flows. In the GLn case, we classify the type (1,,1) examples, and find that they are governed by a root system formed by the roots of even height. We discuss how the spectrum of equivariant cohomology of real and quaternionic Grassmannians, 4n-spheres and the real Cayley plane appear to describe the Hitchin map on even cominuscule upward flows. The even upward flows in question are the same as upward flows in Higgs bundle moduli spaces for quasi-split inner real forms. The latter spaces have been pioneered by Oscar García-Prada and his collaborators.

甚至是非常稳定的上升流的希钦地图
我们定义了偶数非常稳定的希格斯束,并研究了限制于其向上流动的希钦映射。在 GLn 情况下,我们对类型 (1,...,1) 例子进行了分类,发现它们受偶数高度的根形成的根系统支配。我们讨论了实和四元格拉斯曼、4n 球和实 Cayley 平面的等变同调谱如何描述偶数向上流的希钦映射。这里所说的偶数上升流与准分裂内实形式的希格斯束模量空间中的上升流相同。后者由奥斯卡-加西亚-普拉达(Oscar García-Prada)及其合作者开创。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
82
审稿时长
12 months
期刊介绍: The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信