Indranil Biswas, Sorin Dumitrescu, Lynn Heller, Sebastian Heller, João Pedro dos Santos
{"title":"On the monodromy of holomorphic differential systems","authors":"Indranil Biswas, Sorin Dumitrescu, Lynn Heller, Sebastian Heller, João Pedro dos Santos","doi":"10.1142/s0129167x24410015","DOIUrl":null,"url":null,"abstract":"<p>First we survey and explain the strategy of some recent results that construct holomorphic <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext>sl</mtext></mstyle><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-differential systems over some Riemann surfaces <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Σ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> of genus <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>g</mi><mo>≥</mo><mn>2</mn></math></span><span></span>, satisfying the condition that the image of the associated monodromy homomorphism is (real) Fuchsian [I. Biswas, S. Dumitrescu, L. Heller and S. Heller, Fuchsian sl<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>-systems of compact Riemann surfaces [with an appendix by Takuro Mochizuki], preprint, arXiv:org/abs/2104.04818] or some cocompact Kleinian subgroup <disp-formula-group><span><math altimg=\"eq-00005.gif\" display=\"block\" overflow=\"scroll\"><mrow><mi mathvariant=\"normal\">Γ</mi><mo>⊂</mo><mstyle><mtext>SL</mtext></mstyle><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></mrow></math></span><span></span></disp-formula-group> as in [I. Biswas, S. Dumitrescu, L. Heller and S. Heller, On the existence of holomorphic curves in compact quotients of <span><math altimg=\"eq-00006.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext>SL</mtext></mstyle><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, preprint, arXiv:org/abs/2112.03131]. As a consequence, there exist holomorphic maps from <span><math altimg=\"eq-00007.gif\" display=\"inline\" overflow=\"scroll\"><msub><mrow><mi mathvariant=\"normal\">Σ</mi></mrow><mrow><mi>g</mi></mrow></msub></math></span><span></span> to the quotient space <span><math altimg=\"eq-00008.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext>SL</mtext></mstyle><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo><mo stretchy=\"false\">/</mo><mi mathvariant=\"normal\">Γ</mi></math></span><span></span>, where <span><math altimg=\"eq-00009.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Γ</mi><mo>⊂</mo><mstyle><mtext>SL</mtext></mstyle><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> is a cocompact lattice, that do not factor through any elliptic curve [I. Biswas, S. Dumitrescu, L. Heller and S. Heller, On the existence of holomorphic curves in compact quotients of <span><math altimg=\"eq-00010.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext>SL</mtext></mstyle><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, preprint, arXiv:org/abs/2112.03131]. This answers positively a question of Ghys in [E. Ghys, Déformations des structures complexes sur les espaces homogènes de <span><math altimg=\"eq-00011.gif\" display=\"inline\" overflow=\"scroll\"><mstyle><mtext mathvariant=\"normal\">SL</mtext></mstyle><mo stretchy=\"false\">(</mo><mn>2</mn><mo>,</mo><mi>ℂ</mi><mo stretchy=\"false\">)</mo></math></span><span></span>, <i>J. Reine Angew. Math.</i><b>468</b> (1995) 113–138]; the question was also raised by Huckleberry and Winkelmann in [A. H. Huckleberry and J. Winkelmann, Subvarieties of parallelizable manifolds, <i>Math. Ann.</i><b>295</b> (1993) 469–483].</p><p>Then we prove that when <span><math altimg=\"eq-00012.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi></math></span><span></span> is a Riemann surface, a Torelli-type theorem holds for the affine group scheme over <span><math altimg=\"eq-00013.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℂ</mi></math></span><span></span> obtained from the category of holomorphic connections on <i>étale trivial</i> holomorphic bundles.</p><p>After that, we explain how to compute in a simple way the holonomy of a holomorphic connection on a free vector bundle.</p><p>Finally, for a compact Kähler manifold <span><math altimg=\"eq-00014.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi></math></span><span></span>, we investigate the neutral Tannakian category given by the holomorphic connections on étale trivial holomorphic bundles over <span><math altimg=\"eq-00015.gif\" display=\"inline\" overflow=\"scroll\"><mi>M</mi></math></span><span></span>. If <span><math altimg=\"eq-00016.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϖ</mi></math></span><span></span> (respectively, <span><math altimg=\"eq-00017.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Θ</mi></math></span><span></span>) stands for the affine group scheme over <span><math altimg=\"eq-00018.gif\" display=\"inline\" overflow=\"scroll\"><mi>ℂ</mi></math></span><span></span> obtained from the category of connections (respectively, connections on free (trivial) vector bundles), then the natural inclusion produces a morphism <span><math altimg=\"eq-00019.gif\" display=\"inline\" overflow=\"scroll\"><mi>v</mi><mo>:</mo><mi mathvariant=\"cal\">𝒪</mi><mo stretchy=\"false\">(</mo><mi mathvariant=\"normal\">Θ</mi><mo stretchy=\"false\">)</mo><mo>→</mo><mi mathvariant=\"cal\">𝒪</mi><mo stretchy=\"false\">(</mo><mi>ϖ</mi><mo stretchy=\"false\">)</mo></math></span><span></span> of Hopf algebras. We present a description of the transpose of <span><math altimg=\"eq-00020.gif\" display=\"inline\" overflow=\"scroll\"><mi>v</mi></math></span><span></span> in terms of the iterated integrals.</p>","PeriodicalId":54951,"journal":{"name":"International Journal of Mathematics","volume":"35 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0129167x24410015","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
First we survey and explain the strategy of some recent results that construct holomorphic -differential systems over some Riemann surfaces of genus , satisfying the condition that the image of the associated monodromy homomorphism is (real) Fuchsian [I. Biswas, S. Dumitrescu, L. Heller and S. Heller, Fuchsian sl-systems of compact Riemann surfaces [with an appendix by Takuro Mochizuki], preprint, arXiv:org/abs/2104.04818] or some cocompact Kleinian subgroup as in [I. Biswas, S. Dumitrescu, L. Heller and S. Heller, On the existence of holomorphic curves in compact quotients of , preprint, arXiv:org/abs/2112.03131]. As a consequence, there exist holomorphic maps from to the quotient space , where is a cocompact lattice, that do not factor through any elliptic curve [I. Biswas, S. Dumitrescu, L. Heller and S. Heller, On the existence of holomorphic curves in compact quotients of , preprint, arXiv:org/abs/2112.03131]. This answers positively a question of Ghys in [E. Ghys, Déformations des structures complexes sur les espaces homogènes de , J. Reine Angew. Math.468 (1995) 113–138]; the question was also raised by Huckleberry and Winkelmann in [A. H. Huckleberry and J. Winkelmann, Subvarieties of parallelizable manifolds, Math. Ann.295 (1993) 469–483].
Then we prove that when is a Riemann surface, a Torelli-type theorem holds for the affine group scheme over obtained from the category of holomorphic connections on étale trivial holomorphic bundles.
After that, we explain how to compute in a simple way the holonomy of a holomorphic connection on a free vector bundle.
Finally, for a compact Kähler manifold , we investigate the neutral Tannakian category given by the holomorphic connections on étale trivial holomorphic bundles over . If (respectively, ) stands for the affine group scheme over obtained from the category of connections (respectively, connections on free (trivial) vector bundles), then the natural inclusion produces a morphism of Hopf algebras. We present a description of the transpose of in terms of the iterated integrals.
Biswas, S. Dumitrescu, L. Heller and S. Heller, Fuchsian sl(2,ℂ)-systems of compact Riemann surfaces [with an appendix by Takuro Mochizuki], preprint, arXiv:org/abs/2104.04818] or some cocompact Kleinian subgroup Γ⊂SL(2,ℂ) as in [I. Biswas, S. Dumitrescu, L. Heller and S. Heller.Biswas, S. Dumitrescu, L. Heller and S. Heller, On the existence of holomorphic curves in compact quotients of SL(2,ℂ), preprint, arXiv:org/abs/2112.03131].因此,存在从 Σg 到商空间 SL(2,ℂ)/Γ (其中 Γ⊂SL(2,ℂ)是一个cocompact 网格)的全态映射,这些映射不通过任何椭圆曲线的因子 [I. Biswas, S. D. Diswas, S. Diswas, S. Diswas, S. Diswas, S. Diswas, S. Diswas]。比斯瓦斯、杜米特雷斯库、海勒和海勒,论 SL(2,ℂ)紧凑商中全形曲线的存在,预印本,arXiv:org/abs/2112.03131]。这正面回答了盖斯在 [E. Ghys, Déformations in SL(2,ℂ)] 中提出的一个问题。Ghys, Déformations des structures complexes sur les espaces homogènes de SL(2,ℂ), J. Reine Angew.Math.468(1995)113-138];Huckleberry 和 Winkelmann 在[A.H. Huckleberry and J. Winkelmann, Subvarieties of parallelizable manifolds, Math.Ann.295(1993) 469-483]。然后我们证明,当 M 是黎曼曲面时,对于从 étale trivial holomorphic bundles 上的全形连接类别得到的 ℂ 上的仿射组方案,Torelli 型定理成立。最后,对于紧凑的凯勒流形 M,我们研究了由 M 上的 étale trivial holomorphic bundles 上的全纯连接所给出的中性 Tannakian 范畴。如果ϖ(分别是Θ)代表从连接类别(分别是自由(三维)向量束上的连接)得到的ℂ上的仿射组方案,那么自然包含会产生霍普夫代数的态变 v:ᵊ(Θ)→ᵊ(ϖ)。我们用迭代积分来描述 v 的转置。
期刊介绍:
The International Journal of Mathematics publishes original papers in mathematics in general, but giving a preference to those in the areas of mathematics represented by the editorial board. The journal has been published monthly except in June and December to bring out new results without delay. Occasionally, expository papers of exceptional value may also be published. The first issue appeared in March 1990.