{"title":"Properties of some elliptic Hill’s potentials","authors":"Wei He, Peng Su","doi":"10.1007/s13324-024-00897-z","DOIUrl":null,"url":null,"abstract":"<div><p>We study Hill’s differential equation with potential expressed by elliptic functions which arises in some problems of physics and mathematics. Analytical method can be applied to study the local properties of the potential in asymptotic regions of the parameter space. The locations of the saddle points of the potential are determined, the locations of turning points can be determined too when they are close to a saddle point. Combined with the quadratic differential associated with the differential equation, these local data give a qualitative explanation for the asymptotic eigensolutions obtained recently. A relevant topic is about the generalisation of Floquet theorem for ODE with doubly-periodic elliptic function coefficient which bears some new features compared to the case of ODE with real valued singly-periodic coefficient. Beyond the local asymptotic regions, global properties of the elliptic potential are studied using numerical method.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00897-z","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We study Hill’s differential equation with potential expressed by elliptic functions which arises in some problems of physics and mathematics. Analytical method can be applied to study the local properties of the potential in asymptotic regions of the parameter space. The locations of the saddle points of the potential are determined, the locations of turning points can be determined too when they are close to a saddle point. Combined with the quadratic differential associated with the differential equation, these local data give a qualitative explanation for the asymptotic eigensolutions obtained recently. A relevant topic is about the generalisation of Floquet theorem for ODE with doubly-periodic elliptic function coefficient which bears some new features compared to the case of ODE with real valued singly-periodic coefficient. Beyond the local asymptotic regions, global properties of the elliptic potential are studied using numerical method.
期刊介绍:
Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.