Dynamic modulation of multi-task priority for controlling redundancy insufficient robots

IF 2.3 4区 计算机科学 Q3 ROBOTICS
Lu Chen, Yue Wang, Rong Xiong
{"title":"Dynamic modulation of multi-task priority for controlling redundancy insufficient robots","authors":"Lu Chen, Yue Wang, Rong Xiong","doi":"10.1007/s11370-024-00533-6","DOIUrl":null,"url":null,"abstract":"<p>Redundant robots are gaining popularity for their agility in service tasks, but they struggle with managing multiple tasks in dynamic and unstructured environments. Research is currently centered around adjusting task priorities to facilitate the robot’s adaptability to different situational demands. This paper addresses the challenge of automated task prioritization in multi-task handling and presents a solution for robots to effectively execute demanding tasks, even when faced with limited redundancy and multiple constraints. We introduce the concept of <i>secondary merged tasks</i> and formulate task merging as a matrix design problem. An iterative updating algorithm based on real-time task status is proposed to enable automatic prioritization and dynamic adjustment of tasks. This methodology ensures appropriate execution of all tasks at the right time. We analyze the convergence of weight transfer between redundancies and task dependencies, ensuring stable task execution. Simulation experiments and real-world experiments using 9-DOF mobile manipulator and 6-DOF fixed manipulator are conducted to validate the proposed method. This research provides a feasible approach for task prioritization in multi-task handling and holds potential applications.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"57 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-024-00533-6","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Redundant robots are gaining popularity for their agility in service tasks, but they struggle with managing multiple tasks in dynamic and unstructured environments. Research is currently centered around adjusting task priorities to facilitate the robot’s adaptability to different situational demands. This paper addresses the challenge of automated task prioritization in multi-task handling and presents a solution for robots to effectively execute demanding tasks, even when faced with limited redundancy and multiple constraints. We introduce the concept of secondary merged tasks and formulate task merging as a matrix design problem. An iterative updating algorithm based on real-time task status is proposed to enable automatic prioritization and dynamic adjustment of tasks. This methodology ensures appropriate execution of all tasks at the right time. We analyze the convergence of weight transfer between redundancies and task dependencies, ensuring stable task execution. Simulation experiments and real-world experiments using 9-DOF mobile manipulator and 6-DOF fixed manipulator are conducted to validate the proposed method. This research provides a feasible approach for task prioritization in multi-task handling and holds potential applications.

Abstract Image

动态调制多任务优先级,控制冗余不足的机器人
冗余机器人因其在服务任务中的灵活性而越来越受欢迎,但它们在动态和非结构化环境中管理多项任务时却举步维艰。目前的研究主要围绕调整任务优先级展开,以促进机器人适应不同的环境需求。本文探讨了在多任务处理中自动调整任务优先级的难题,并提出了一种解决方案,使机器人即使在面临有限冗余和多重限制的情况下,也能有效执行要求苛刻的任务。我们引入了二次合并任务的概念,并将任务合并表述为一个矩阵设计问题。我们提出了一种基于实时任务状态的迭代更新算法,以实现任务的自动优先级排序和动态调整。这种方法可确保在适当的时间执行所有任务。我们分析了冗余和任务依赖之间权重转移的收敛性,从而确保任务的稳定执行。我们使用 9-DOF 移动机械手和 6-DOF 固定机械手进行了仿真实验和实际实验,以验证所提出的方法。这项研究为多任务处理中的任务优先级排序提供了一种可行的方法,并具有潜在的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
4.00%
发文量
46
期刊介绍: The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信