{"title":"Generalized vortex flow of nanoparticle shapes over a permeable disc surface with generalized slip conditions","authors":"Muhammad Rahman, Aqib Ali, Mustafa Turkyilmazoglu","doi":"10.1142/s0217984924503469","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates the generalized vortex flow of nanofluid consisting of titanium dioxide (TiO<sub>2</sub>) with base fluid (H<sub>2</sub>O) over a permeable disk surface that generates a heat transfer process in the thermal boundary layer of the disk. Four types of non-spherical shapes of nanoparticles (blade, brick, cylinder and platelet) are considered for the research. The motion is produced when the fluid is far from the disk surface and rotates like a solid body with a constant angular velocity <span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mi mathvariant=\"normal\">Ω</mi></math></span><span></span>. The partial differential equations (PDEs) are obtained using boundary layer approximations and then converted into ordinary differential equations (ODEs) using suitable similarity transformations. These nonlinear ODEs are solved using the bvp4c MATLAB solver. The effect of different parameters (<i>n</i>, <i>A</i>, <span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mi>α</mi></math></span><span></span>, <span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mi>ϕ</mi></math></span><span></span>, <i>R</i> and Pr) on the velocity components and temperature profile is shown graphically and in tabular results. This analysis concludes that for all non-spherical shapes, the velocity spectrum of all nanoparticles decreases when the values of factors such as power-law, suction, volume fraction and slip parameter increase. All non-spherical shapes of a nanofluid experience a decrease in fluid temperature due to the Prandtl number, while radiation numbers have the opposite effect.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"300 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503469","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
This paper investigates the generalized vortex flow of nanofluid consisting of titanium dioxide (TiO2) with base fluid (H2O) over a permeable disk surface that generates a heat transfer process in the thermal boundary layer of the disk. Four types of non-spherical shapes of nanoparticles (blade, brick, cylinder and platelet) are considered for the research. The motion is produced when the fluid is far from the disk surface and rotates like a solid body with a constant angular velocity . The partial differential equations (PDEs) are obtained using boundary layer approximations and then converted into ordinary differential equations (ODEs) using suitable similarity transformations. These nonlinear ODEs are solved using the bvp4c MATLAB solver. The effect of different parameters (n, A, , , R and Pr) on the velocity components and temperature profile is shown graphically and in tabular results. This analysis concludes that for all non-spherical shapes, the velocity spectrum of all nanoparticles decreases when the values of factors such as power-law, suction, volume fraction and slip parameter increase. All non-spherical shapes of a nanofluid experience a decrease in fluid temperature due to the Prandtl number, while radiation numbers have the opposite effect.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.