Well-posedness of a class of stochastic partial differential equations with fully monotone coefficients perturbed by Lévy noise

IF 1.4 3区 数学 Q1 MATHEMATICS
Ankit Kumar, Manil T. Mohan
{"title":"Well-posedness of a class of stochastic partial differential equations with fully monotone coefficients perturbed by Lévy noise","authors":"Ankit Kumar,&nbsp;Manil T. Mohan","doi":"10.1007/s13324-024-00898-y","DOIUrl":null,"url":null,"abstract":"<div><p>In this article, we consider the following class of stochastic partial differential equations (SPDEs): </p><div><div><span>$$\\begin{aligned} \\left\\{ \\! \\begin{aligned} \\text {d} \\textbf{X}(t)&amp;=\\text {A}(t,\\textbf{X}(t))\\text {d} t+\\text {B}(t,\\textbf{X}(t))\\text {d}\\text {W}(t)+\\!\\!\\int _{\\text {Z}}\\!\\gamma (t,\\textbf{X}(t-),z)\\widetilde{\\pi }(\\text {d} t,\\text {d} z),\\; t\\!\\in \\![0,T],\\\\ \\textbf{X}(0)&amp;=\\varvec{x} \\in \\mathbb {H}, \\end{aligned} \\right. \\end{aligned}$$</span></div></div><p>with <i>fully locally monotone</i> coefficients in a Gelfand triplet <span>\\(\\mathbb {V}\\subset \\mathbb {H}\\subset \\mathbb {V}^*\\)</span>, where the mappings </p><div><div><span>$$\\begin{aligned} \\text {A}:[0,T]\\times \\mathbb {V}\\rightarrow \\mathbb {V}^*,\\quad \\text {B}:[0,T]\\times \\mathbb {V}\\rightarrow \\text {L}_2(\\mathbb {U},\\mathbb {H}), \\quad \\gamma :[0,T]\\times \\mathbb {V}\\times \\text {Z}\\rightarrow \\mathbb {H}, \\end{aligned}$$</span></div></div><p>are measurable, <span>\\(\\text {L}_2(\\mathbb {U},\\mathbb {H})\\)</span> is the space of all Hilbert-Schmidt operators from <span>\\(\\mathbb {U}\\rightarrow \\mathbb {H}\\)</span>, <span>\\(\\text {W}\\)</span> is a <span>\\(\\mathbb {U}\\)</span>-cylindrical Wiener process and <span>\\(\\widetilde{\\pi }\\)</span> is a compensated time homogeneous Poisson random measure. This class of SPDEs covers various fluid dynamic models and also includes quasi-linear SPDEs, the convection-diffusion equation, the Cahn-Hilliard equation, and the two-dimensional liquid crystal model. Under certain generic assumptions of <span>\\(\\text {A},\\text {B}\\)</span> and <span>\\(\\gamma \\)</span>, using the classical Faedo–Galekin technique, a compactness method and a version of Skorokhod’s representation theorem, we prove the existence of a <i>probabilistic weak solution</i> as well as <i>pathwise uniqueness of solution</i>. We use the classical Yamada-Watanabe theorem to obtain the existence of a <i>unique probabilistic strong solution</i>. Furthermore, we establish a result on the continuous dependence of the solutions on the initial data. Finally, we allow both diffusion coefficient <span>\\(\\text {B}(t,\\cdot )\\)</span> and jump noise coefficient <span>\\(\\gamma (t,\\cdot ,z)\\)</span> to depend on both <span>\\(\\mathbb {H}\\)</span>-norm and <span>\\(\\mathbb {V}\\)</span>-norm, which implies that both the coefficients could also depend on the gradient of solution. Under some assumptions on the growth coefficient corresponding to the <span>\\(\\mathbb {V}\\)</span>-norm, we establish the global solvability results also.</p></div>","PeriodicalId":48860,"journal":{"name":"Analysis and Mathematical Physics","volume":"14 3","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and Mathematical Physics","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s13324-024-00898-y","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

In this article, we consider the following class of stochastic partial differential equations (SPDEs):

$$\begin{aligned} \left\{ \! \begin{aligned} \text {d} \textbf{X}(t)&=\text {A}(t,\textbf{X}(t))\text {d} t+\text {B}(t,\textbf{X}(t))\text {d}\text {W}(t)+\!\!\int _{\text {Z}}\!\gamma (t,\textbf{X}(t-),z)\widetilde{\pi }(\text {d} t,\text {d} z),\; t\!\in \![0,T],\\ \textbf{X}(0)&=\varvec{x} \in \mathbb {H}, \end{aligned} \right. \end{aligned}$$

with fully locally monotone coefficients in a Gelfand triplet \(\mathbb {V}\subset \mathbb {H}\subset \mathbb {V}^*\), where the mappings

$$\begin{aligned} \text {A}:[0,T]\times \mathbb {V}\rightarrow \mathbb {V}^*,\quad \text {B}:[0,T]\times \mathbb {V}\rightarrow \text {L}_2(\mathbb {U},\mathbb {H}), \quad \gamma :[0,T]\times \mathbb {V}\times \text {Z}\rightarrow \mathbb {H}, \end{aligned}$$

are measurable, \(\text {L}_2(\mathbb {U},\mathbb {H})\) is the space of all Hilbert-Schmidt operators from \(\mathbb {U}\rightarrow \mathbb {H}\), \(\text {W}\) is a \(\mathbb {U}\)-cylindrical Wiener process and \(\widetilde{\pi }\) is a compensated time homogeneous Poisson random measure. This class of SPDEs covers various fluid dynamic models and also includes quasi-linear SPDEs, the convection-diffusion equation, the Cahn-Hilliard equation, and the two-dimensional liquid crystal model. Under certain generic assumptions of \(\text {A},\text {B}\) and \(\gamma \), using the classical Faedo–Galekin technique, a compactness method and a version of Skorokhod’s representation theorem, we prove the existence of a probabilistic weak solution as well as pathwise uniqueness of solution. We use the classical Yamada-Watanabe theorem to obtain the existence of a unique probabilistic strong solution. Furthermore, we establish a result on the continuous dependence of the solutions on the initial data. Finally, we allow both diffusion coefficient \(\text {B}(t,\cdot )\) and jump noise coefficient \(\gamma (t,\cdot ,z)\) to depend on both \(\mathbb {H}\)-norm and \(\mathbb {V}\)-norm, which implies that both the coefficients could also depend on the gradient of solution. Under some assumptions on the growth coefficient corresponding to the \(\mathbb {V}\)-norm, we establish the global solvability results also.

一类具有完全单调系数且受列维噪声扰动的随机偏微分方程的良好计算性
在本文中,我们将考虑以下一类随机偏微分方程(SPDEs):$$\begin{aligned}(开始{aligned})。\left\{ \!\开始\文本 {d}\textbf{X}(t)&=text {A}(t,\textbf{X}(t))\text {d} t+\text {B}(t,\textbf{X}(t))\text {d}\text {W}(t)+\!\!\int _\{text {Z}}\!\gamma(t,textbf{X}(t-),z)widetilde{pi }(t,text {d} z),\; t!\in \![0,T],\textbf{X}(0)&=\varvec{x}。\in (mathbb{H}), (end{aligned})\right.\end{aligned}$$with fully locally monotone coefficients in a Gelfand triplet \(\mathbb {V}\subset \mathbb {H}\subset \mathbb {V}^*\), where the mapping $$\begin{aligned}.\text {A}:[0,T]\times \mathbb {V}\rightarrow \mathbb {V}^*,\quad \text {B}:[0,T]\times \mathbb {V}\rightarrow \text {L}_2(\mathbb {U},\mathbb {H}),\quad \gamma :[times \mathbb {V}\times \text {Z}\rightarrow \mathbb {H}, \end{aligned}$$都是可测的,(\text {L}_2(\mathbb {U},\mathbb {H}))是来自\(\mathbb {U}\rightarrow \mathbb {H})的所有希尔伯特-施密特算子的空间、)\文本{W}是一个圆柱维纳过程,而(widetilde{pi })是一个补偿时间同质泊松随机度量。这一类 SPDEs 涵盖了各种流体动力学模型,还包括准线性 SPDEs、对流扩散方程、Cahn-Hilliard 方程和二维液晶模型。在某些关于 \(text {A},\text {B}\) 和 \(\gamma \) 的一般假设下,利用经典的 Faedo-Galekin 技术、紧凑性方法和 Skorokhod 表示定理的一个版本,我们证明了概率弱解的存在性以及解的路径唯一性。我们利用经典的 Yamada-Watanabe 定理获得了唯一概率强解的存在性。此外,我们还建立了关于解对初始数据的连续依赖性的结果。最后,我们允许扩散系数(text {B}(t,\cdot )\) 和跳跃噪声系数(gamma (t,\cdot ,z)\)同时依赖于(mathbb {H})-正态和(mathbb {V})-正态,这意味着这两个系数也可能依赖于解的梯度。在对\(\mathbb {V}\)-规范对应的增长系数做一些假设的情况下,我们也建立了全局可解性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Analysis and Mathematical Physics
Analysis and Mathematical Physics MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.70
自引率
0.00%
发文量
122
期刊介绍: Analysis and Mathematical Physics (AMP) publishes current research results as well as selected high-quality survey articles in real, complex, harmonic; and geometric analysis originating and or having applications in mathematical physics. The journal promotes dialog among specialists in these areas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信