Harnessing Orbital Hall Effect in Spin-Orbit Torque MRAM

Rahul Gupta, Chloé Bouard, Fabian Kammerbauer, J. Omar Ledesma-Martin, Iryna Kononenko, Sylvain Martin, Gerhard Jakob, Marc Drouard, Mathias Kläui
{"title":"Harnessing Orbital Hall Effect in Spin-Orbit Torque MRAM","authors":"Rahul Gupta, Chloé Bouard, Fabian Kammerbauer, J. Omar Ledesma-Martin, Iryna Kononenko, Sylvain Martin, Gerhard Jakob, Marc Drouard, Mathias Kläui","doi":"arxiv-2404.02821","DOIUrl":null,"url":null,"abstract":"Spin-Orbit Torque (SOT) Magnetic Random-Access Memory (MRAM) devices offer\nimproved power efficiency, nonvolatility, and performance compared to static\nRAM, making them ideal, for instance, for cache memory applications. Efficient\nmagnetization switching, long data retention, and high-density integration in\nSOT MRAM require ferromagnets (FM) with perpendicular magnetic anisotropy (PMA)\ncombined with large torques enhanced by Orbital Hall Effect (OHE). We have\nengineered PMA [Co/Ni]$_3$ FM on selected OHE layers (Ru, Nb, Cr) and\ninvestigated the potential of theoretically predicted larger orbital Hall\nconductivity (OHC) to quantify the torque and switching current in\nOHE/[Co/Ni]$_3$ stacks. Our results demonstrate a $\\sim$30\\% enhancement in\ndamping-like torque efficiency with a positive sign for the Ru OHE layer\ncompared to a pure Pt, accompanied by a $\\sim$20\\% reduction in switching\ncurrent for Ru compared to pure Pt across more than 250 devices, leading to\nmore than a 60\\% reduction in switching power. These findings validate the\napplication of Ru in devices relevant to industrial contexts, supporting\ntheoretical predictions regarding its superior OHC. This investigation\nhighlights the potential of enhanced orbital torques to improve the performance\nof orbital-assisted SOT-MRAM, paving the way for next-generation memory\ntechnology.","PeriodicalId":501211,"journal":{"name":"arXiv - PHYS - Other Condensed Matter","volume":"66 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Other Condensed Matter","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2404.02821","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spin-Orbit Torque (SOT) Magnetic Random-Access Memory (MRAM) devices offer improved power efficiency, nonvolatility, and performance compared to static RAM, making them ideal, for instance, for cache memory applications. Efficient magnetization switching, long data retention, and high-density integration in SOT MRAM require ferromagnets (FM) with perpendicular magnetic anisotropy (PMA) combined with large torques enhanced by Orbital Hall Effect (OHE). We have engineered PMA [Co/Ni]$_3$ FM on selected OHE layers (Ru, Nb, Cr) and investigated the potential of theoretically predicted larger orbital Hall conductivity (OHC) to quantify the torque and switching current in OHE/[Co/Ni]$_3$ stacks. Our results demonstrate a $\sim$30\% enhancement in damping-like torque efficiency with a positive sign for the Ru OHE layer compared to a pure Pt, accompanied by a $\sim$20\% reduction in switching current for Ru compared to pure Pt across more than 250 devices, leading to more than a 60\% reduction in switching power. These findings validate the application of Ru in devices relevant to industrial contexts, supporting theoretical predictions regarding its superior OHC. This investigation highlights the potential of enhanced orbital torques to improve the performance of orbital-assisted SOT-MRAM, paving the way for next-generation memory technology.
在自旋轨道转矩 MRAM 中利用轨道霍尔效应
与静态 RAM 相比,自旋轨道力矩(SOT)磁随机存取存储器(MRAM)器件具有更高的能效、非挥发性和性能,因此非常适合高速缓冲存储器等应用。要在 SOT MRAM 中实现高效磁化切换、长时间数据保留和高密度集成,就需要具有垂直磁各向异性(PMA)的铁磁体(FM),并通过轨道霍尔效应(OHE)增强大扭矩。我们在选定的 OHE 层(Ru、Nb、Cr)上设计了 PMA [Co/Ni]$_3$ FM,并研究了理论上预测的更大轨道霍尔电导率(OHC)的潜力,以量化 OHE/[Co/Ni]$_3$ 堆栈中的扭矩和开关电流。我们的研究结果表明,与纯铂相比,Ru OHE 层的阻尼转矩效率提高了 30%,同时,与纯铂相比,Ru OHE 层在 250 多个器件中的开关电流降低了 20%,开关功率降低了 60%以上。这些发现验证了 Ru 在与工业相关的器件中的应用,支持了有关其优异 OHC 的理论预测。这项研究凸显了增强轨道力矩改善轨道辅助 SOT-MRAM 性能的潜力,为下一代存储器技术铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信