Lin Wei, GuiLi Liu, JiaXin Wang, ZhongHua Yang, GuoYing Zhang
{"title":"Effect of functionalized carbon nanotube on cement mortar: From experiment to DFT research","authors":"Lin Wei, GuiLi Liu, JiaXin Wang, ZhongHua Yang, GuoYing Zhang","doi":"10.1142/s0217984924502774","DOIUrl":null,"url":null,"abstract":"<p>In this paper, functionalized nanotube-reinforced cementitious composites were prepared, and the mechanical property test results showed that the 28d flexural strength of the composite was increased by 41.58% at a hydroxylated carbon nanotube mass fraction of 0.08<span><math altimg=\"eq-00001.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>wt.% compared to the original cement mortar. Carboxylated carbon nanotubes with a mass fraction of 0.02%, on the other hand, increased the 28d compressive strength by 99.12%. Probing the effect of the presence of functional groups on carbon nanotubes on the CNT/C–S–H interface by first principles. The results showed that the shear strengths (11.392<span><math altimg=\"eq-00002.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>MPa and 14.130<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>MPa) of hydroxylated carbon nanotubes and plain carbon nanotubes at the interface with cementitious (CNT-OH/CSH and CNT/CSH) were lower than the shear strengths (21.584<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>MPa) of carboxylated carbon nanotubes at the interface with cementitious (CNT-COOH/CSH). The adsorption of functional groups on carbon nanotubes changes the electron distribution on the surface of carbon nanotubes. The introduction of carboxyl groups exacerbates the charge transfer between carbon nanotubes and cementitious groups and promotes the generation of solid chemical bonds. This is the reason that carboxylated nanotubes added as reinforcement to cement mortar give better strength to the composite than hydroxylated nanotubes.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"12 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924502774","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, functionalized nanotube-reinforced cementitious composites were prepared, and the mechanical property test results showed that the 28d flexural strength of the composite was increased by 41.58% at a hydroxylated carbon nanotube mass fraction of 0.08wt.% compared to the original cement mortar. Carboxylated carbon nanotubes with a mass fraction of 0.02%, on the other hand, increased the 28d compressive strength by 99.12%. Probing the effect of the presence of functional groups on carbon nanotubes on the CNT/C–S–H interface by first principles. The results showed that the shear strengths (11.392MPa and 14.130MPa) of hydroxylated carbon nanotubes and plain carbon nanotubes at the interface with cementitious (CNT-OH/CSH and CNT/CSH) were lower than the shear strengths (21.584MPa) of carboxylated carbon nanotubes at the interface with cementitious (CNT-COOH/CSH). The adsorption of functional groups on carbon nanotubes changes the electron distribution on the surface of carbon nanotubes. The introduction of carboxyl groups exacerbates the charge transfer between carbon nanotubes and cementitious groups and promotes the generation of solid chemical bonds. This is the reason that carboxylated nanotubes added as reinforcement to cement mortar give better strength to the composite than hydroxylated nanotubes.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.