New soliton solutions of fractional Biswas–Milovic equation with Kerr, parabolic and cubic-quartic nonlinearities

IF 1.8 4区 物理与天体物理 Q3 PHYSICS, APPLIED
Esra Pekönür, Mutlu Akar
{"title":"New soliton solutions of fractional Biswas–Milovic equation with Kerr, parabolic and cubic-quartic nonlinearities","authors":"Esra Pekönür, Mutlu Akar","doi":"10.1142/s0217984924503561","DOIUrl":null,"url":null,"abstract":"<p>This paper presents new explicit solutions of hyperbolic and trigonometric functions, obtained from the conformable fractional Biswas–Milovic equation, characterizing the long distance optical communications with three types nonlinearities: Kerr law, parabolic law and cubic-quartic ones. The Sardar sub-equation method is used, which gives the results that are of significant potential in a nonlinear system, providing a clear physical interpretation of the model under study. The resulting solutions are novel for the fractional Biswas–Milovic equation with the help of the method used, a powerful instrument for exploring precise solitary wave solutions for various other nonlinear equations in a nonlinear medium.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"65 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924503561","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents new explicit solutions of hyperbolic and trigonometric functions, obtained from the conformable fractional Biswas–Milovic equation, characterizing the long distance optical communications with three types nonlinearities: Kerr law, parabolic law and cubic-quartic ones. The Sardar sub-equation method is used, which gives the results that are of significant potential in a nonlinear system, providing a clear physical interpretation of the model under study. The resulting solutions are novel for the fractional Biswas–Milovic equation with the help of the method used, a powerful instrument for exploring precise solitary wave solutions for various other nonlinear equations in a nonlinear medium.

具有克尔、抛物和三次方非线性的分数比斯沃斯-米洛维奇方程的新孤子解
本文介绍了双曲函数和三角函数的新显式解法,这些解法是从共形分式比斯沃斯-米洛维奇方程中获得的,用于描述具有三种非线性的长距离光通信:该方程描述了具有三种非线性的长距离光通信的特征:克尔定律、抛物线定律和三次方-四次方定律。所使用的 Sardar 子方程方法给出了在非线性系统中具有重要潜力的结果,为所研究的模型提供了清晰的物理解释。在所使用方法的帮助下,分数比斯瓦斯-米洛维奇方程得到了新颖的解,这是探索非线性介质中各种其他非线性方程精确孤波解的有力工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Modern Physics Letters B
Modern Physics Letters B 物理-物理:凝聚态物理
CiteScore
3.70
自引率
10.50%
发文量
235
审稿时长
5.9 months
期刊介绍: MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信