Electronic structure and optical properties of alkali metal X (X=Li, Na, K, Rb, Cs) adsorbed in the Te vacancy-deficient molybdenum ditelluride system: A first-principles study
{"title":"Electronic structure and optical properties of alkali metal X (X=Li, Na, K, Rb, Cs) adsorbed in the Te vacancy-deficient molybdenum ditelluride system: A first-principles study","authors":"Ying Dai, Guili Liu, Jianlin He, Junjie Ni, Guoying Zhang","doi":"10.1142/s0217984924502713","DOIUrl":null,"url":null,"abstract":"<p>In the framework of density functional theory, based on first principles, the plane wave pseudopotential technique was utilized to investigate the electrical and optical properties of MoTe<sub>2</sub> adjusted by alkali metal X adsorption on Te vacancy defects (X<span><math altimg=\"eq-00003.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>=<span><math altimg=\"eq-00004.gif\" display=\"inline\" overflow=\"scroll\"><mspace width=\".17em\"></mspace></math></span><span></span>Li, Na, K, Rb, Cs). The adsorption of alkali metals on Te vacancy-deficient MoTe<sub>2</sub> monolayers has been computationally analyzed. Charge transfer, electronic structure, and optical properties of alkali metal adsorption were systematically studied. It is shown that the MoTe<sub>2</sub> bandgap is significantly reduced under Te vacancies. Te vacancies are frequently active sites in TMDs materials. With the adsorption of alkali metal atoms X (X = Li, Na, K, Rb, Cs) in the Te vacancy MoTe<sub>2</sub> system, Li atoms have the most substantial geometrical deformation and the minor adsorption energy and can improve the adsorption properties more effectively. The MoTe<sub>2</sub> system undergoes a change from semiconductor to metal after adsorption. Regarding optical properties, firm absorption and reflection peaks appeared, and a blueshift phenomenon was observed in the mountains. It is expected that these discoveries are likely to guide the use of molybdenum ditelluride in optoelectronics.</p>","PeriodicalId":18570,"journal":{"name":"Modern Physics Letters B","volume":"97 1","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Modern Physics Letters B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1142/s0217984924502713","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
In the framework of density functional theory, based on first principles, the plane wave pseudopotential technique was utilized to investigate the electrical and optical properties of MoTe2 adjusted by alkali metal X adsorption on Te vacancy defects (X=Li, Na, K, Rb, Cs). The adsorption of alkali metals on Te vacancy-deficient MoTe2 monolayers has been computationally analyzed. Charge transfer, electronic structure, and optical properties of alkali metal adsorption were systematically studied. It is shown that the MoTe2 bandgap is significantly reduced under Te vacancies. Te vacancies are frequently active sites in TMDs materials. With the adsorption of alkali metal atoms X (X = Li, Na, K, Rb, Cs) in the Te vacancy MoTe2 system, Li atoms have the most substantial geometrical deformation and the minor adsorption energy and can improve the adsorption properties more effectively. The MoTe2 system undergoes a change from semiconductor to metal after adsorption. Regarding optical properties, firm absorption and reflection peaks appeared, and a blueshift phenomenon was observed in the mountains. It is expected that these discoveries are likely to guide the use of molybdenum ditelluride in optoelectronics.
期刊介绍:
MPLB opens a channel for the fast circulation of important and useful research findings in Condensed Matter Physics, Statistical Physics, as well as Atomic, Molecular and Optical Physics. A strong emphasis is placed on topics of current interest, such as cold atoms and molecules, new topological materials and phases, and novel low-dimensional materials. The journal also contains a Brief Reviews section with the purpose of publishing short reports on the latest experimental findings and urgent new theoretical developments.