A class of kth-order dependence-driven random coefficient mixed thinning integer-valued autoregressive process to analyse epileptic seizure data and COVID-19 data

Pub Date : 2024-04-08 DOI:10.1111/anzs.12411
Xiufang Liu, Dehui Wang, Huaping Chen, Lifang Zhao, Liang Liu
{"title":"A class of kth-order dependence-driven random coefficient mixed thinning integer-valued autoregressive process to analyse epileptic seizure data and COVID-19 data","authors":"Xiufang Liu,&nbsp;Dehui Wang,&nbsp;Huaping Chen,&nbsp;Lifang Zhao,&nbsp;Liang Liu","doi":"10.1111/anzs.12411","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Data related to the counting of elements of variable character are frequently encountered in time series studies. This paper brings forward a new class of <span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math>th-order dependence-driven random coefficient mixed thinning integer-valued autoregressive time series model (DDRCMTINAR(<span></span><math>\n <semantics>\n <mrow>\n <mi>k</mi>\n </mrow>\n <annotation>$$ k $$</annotation>\n </semantics></math>)) to deal with such data. Stationarity and ergodicity properties of the proposed model are derived in detail. The unknown parameters are estimated by conditional least squares, and modified quasi-likelihood and asymptotic normality of the obtained parameter estimators is established. The performances of the adopted estimate methods are checked via simulations, which present that modified quasi-likelihood estimators perform better than the conditional least squares considering the proportion of within-<span></span><math>\n <semantics>\n <mrow>\n <mi>Ω</mi>\n </mrow>\n <annotation>$$ \\Omega $$</annotation>\n </semantics></math> estimates in certain regions of the parameter space. The validity and practical utility of the model are investigated by epileptic seizure data and COVID-19 data of suspected cases in China.</p>\n </div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Data related to the counting of elements of variable character are frequently encountered in time series studies. This paper brings forward a new class of k $$ k $$ th-order dependence-driven random coefficient mixed thinning integer-valued autoregressive time series model (DDRCMTINAR( k $$ k $$ )) to deal with such data. Stationarity and ergodicity properties of the proposed model are derived in detail. The unknown parameters are estimated by conditional least squares, and modified quasi-likelihood and asymptotic normality of the obtained parameter estimators is established. The performances of the adopted estimate methods are checked via simulations, which present that modified quasi-likelihood estimators perform better than the conditional least squares considering the proportion of within- Ω $$ \Omega $$ estimates in certain regions of the parameter space. The validity and practical utility of the model are investigated by epileptic seizure data and COVID-19 data of suspected cases in China.

分享
查看原文
一类用于分析癫痫发作数据和 COVID-19 数据的 kth 阶依赖性驱动随机系数混合稀疏整数值自回归过程
摘要 在时间序列研究中经常会遇到与变量元素计数有关的数据。本文提出了一类新的三阶依赖驱动随机系数混合稀疏整数值自回归时间序列模型(DDRCMTINAR())来处理这类数据。详细推导了所提模型的平稳性和遍历性。用条件最小二乘法估计未知参数,并建立了修正准似然法和所获参数估计值的渐近正态性。通过模拟检验了所采用的估计方法的性能,结果表明,考虑到参数空间某些区域内估计值的比例,修正的准似然估计值的性能优于条件最小二乘法。该模型的有效性和实用性通过中国癫痫发作数据和 COVID-19 疑似病例数据进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信