Complex Pythagorean Hesitant Fuzzy Aggregation Operators Based on Aczel-Alsina t-Norm and t-Conorm and Their Applications in Decision-Making

IF 3.6 3区 计算机科学 Q2 AUTOMATION & CONTROL SYSTEMS
Zaifu Sun, Zeeshan Ali, Tahir Mahmood, Peide Liu
{"title":"Complex Pythagorean Hesitant Fuzzy Aggregation Operators Based on Aczel-Alsina t-Norm and t-Conorm and Their Applications in Decision-Making","authors":"Zaifu Sun, Zeeshan Ali, Tahir Mahmood, Peide Liu","doi":"10.1007/s40815-023-01613-y","DOIUrl":null,"url":null,"abstract":"<p>Aggregation operators are used for aggregating the collection of finite information into a singleton set. The Aczel-Alsina t-norm and t-conorm are very useful for constructing any kind of new aggregation operators, which was presented by Aczel and Alsina in 1982. Moreover, complex Pythagorean fuzzy (CPF) sets and hesitant fuzzy (HF) sets are the most generalized and very useful techniques to cope with unreliable and awkward information in genuine life problems. In this manuscript, we combine the HF set and CPF set to derive the complex Pythagorean hesitant fuzzy (CPHF) set and its fundamental laws. Furthermore, we evaluate the Aczel-Alsina operational laws based on Aczel-Alsina norms and CPHF information. Additionally, based on the Aczel-Alsina operational laws for CPHF information, we investigate the CPHF Aczel-Alsina-weighted averaging (CPHFAAWA) operator, CPHF Aczel-Alsina-ordered weighted averaging (CPHFAAOWA) operator, CPHF Aczel-Alsina-weighted geometric (CPHFAAWG) operator, and CPHF Aczel-Alsina-ordered weighted geometric (CPHFAAOWG) operator. Some remarkable properties are also examined for the invented theory. Moreover, a multi-attribute decision-making (MADM) technique is presented based on discovered operators for CPHF information. Finally, we aim to illustrate some examples for comparing the proposed techniques with some existing ones to show the worth and feasibility of the discovered approaches.</p>","PeriodicalId":14056,"journal":{"name":"International Journal of Fuzzy Systems","volume":"61 1","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Fuzzy Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s40815-023-01613-y","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Aggregation operators are used for aggregating the collection of finite information into a singleton set. The Aczel-Alsina t-norm and t-conorm are very useful for constructing any kind of new aggregation operators, which was presented by Aczel and Alsina in 1982. Moreover, complex Pythagorean fuzzy (CPF) sets and hesitant fuzzy (HF) sets are the most generalized and very useful techniques to cope with unreliable and awkward information in genuine life problems. In this manuscript, we combine the HF set and CPF set to derive the complex Pythagorean hesitant fuzzy (CPHF) set and its fundamental laws. Furthermore, we evaluate the Aczel-Alsina operational laws based on Aczel-Alsina norms and CPHF information. Additionally, based on the Aczel-Alsina operational laws for CPHF information, we investigate the CPHF Aczel-Alsina-weighted averaging (CPHFAAWA) operator, CPHF Aczel-Alsina-ordered weighted averaging (CPHFAAOWA) operator, CPHF Aczel-Alsina-weighted geometric (CPHFAAWG) operator, and CPHF Aczel-Alsina-ordered weighted geometric (CPHFAAOWG) operator. Some remarkable properties are also examined for the invented theory. Moreover, a multi-attribute decision-making (MADM) technique is presented based on discovered operators for CPHF information. Finally, we aim to illustrate some examples for comparing the proposed techniques with some existing ones to show the worth and feasibility of the discovered approaches.

Abstract Image

基于 Aczel-Alsina t-Norm 和 t-Conorm 的复杂毕达哥拉斯犹豫模糊聚合算子及其在决策中的应用
聚合算子用于将有限信息集合聚合成单子集。Aczel-Alsina t-norm 和 t-conorm 对于构建任何一种新的聚合算子都非常有用,它们是由 Aczel 和 Alsina 于 1982 年提出的。此外,复杂毕达哥拉斯模糊(CPF)集和犹豫模糊(HF)集是最通用、最有用的技术,可用于处理真实生活问题中的不可靠和尴尬信息。在本手稿中,我们将 HF 集和 CPF 集结合起来,推导出复杂毕达哥拉斯犹豫模糊集(CPHF)及其基本规律。此外,我们还根据 Aczel-Alsina 准则和 CPHF 信息评估了 Aczel-Alsina 运算定律。此外,基于 CPHF 信息的 Aczel-Alsina 运算定律,我们研究了 CPHF Aczel-Alsina 加权平均(CPHFAAWA)算子、CPHF Aczel-Alsina 有序加权平均(CPHFAAOWA)算子、CPHF Aczel-Alsina 加权几何(CPHFAAWG)算子和 CPHF Aczel-Alsina 有序加权几何(CPHFAAOWG)算子。研究还考察了所发明理论的一些显著特性。此外,我们还介绍了一种基于所发现的 CPHF 信息算子的多属性决策(MADM)技术。最后,我们将举例说明所提出的技术与一些现有技术的比较,以显示所发现方法的价值和可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Journal of Fuzzy Systems
International Journal of Fuzzy Systems 工程技术-计算机:人工智能
CiteScore
7.80
自引率
9.30%
发文量
188
审稿时长
16 months
期刊介绍: The International Journal of Fuzzy Systems (IJFS) is an official journal of Taiwan Fuzzy Systems Association (TFSA) and is published semi-quarterly. IJFS will consider high quality papers that deal with the theory, design, and application of fuzzy systems, soft computing systems, grey systems, and extension theory systems ranging from hardware to software. Survey and expository submissions are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信