Automatic deforestation detectors based on frequentist statistics and their extensions for other spatial objects

IF 1.5 3区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES
Environmetrics Pub Date : 2024-04-16 DOI:10.1002/env.2848
Jesper Muren, Vilhelm Niklasson, Dmitry Otryakhin, Maxim Romashin
{"title":"Automatic deforestation detectors based on frequentist statistics and their extensions for other spatial objects","authors":"Jesper Muren,&nbsp;Vilhelm Niklasson,&nbsp;Dmitry Otryakhin,&nbsp;Maxim Romashin","doi":"10.1002/env.2848","DOIUrl":null,"url":null,"abstract":"<p>This article is devoted to the problem of detection of forest and nonforest areas on Earth images. We propose two statistical methods to tackle this problem: one based on multiple hypothesis testing with parametric distribution families, another one—on nonparametric tests. The parametric approach is novel in the literature and relevant to a larger class of problems—detection of natural objects, as well as anomaly detection. We develop mathematical background for each of the two methods, build self-sufficient detection algorithms using them and discuss practical aspects of their implementation. We also compare our algorithms with each other and with those from standard machine learning using satellite data.</p>","PeriodicalId":50512,"journal":{"name":"Environmetrics","volume":"35 5","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/env.2848","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environmetrics","FirstCategoryId":"93","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/env.2848","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This article is devoted to the problem of detection of forest and nonforest areas on Earth images. We propose two statistical methods to tackle this problem: one based on multiple hypothesis testing with parametric distribution families, another one—on nonparametric tests. The parametric approach is novel in the literature and relevant to a larger class of problems—detection of natural objects, as well as anomaly detection. We develop mathematical background for each of the two methods, build self-sufficient detection algorithms using them and discuss practical aspects of their implementation. We also compare our algorithms with each other and with those from standard machine learning using satellite data.

Abstract Image

基于频数统计的自动毁林检测器及其对其他空间物体的扩展
本文主要讨论地球图像上森林和非森林区域的检测问题。我们提出了两种统计方法来解决这个问题:一种是基于参数分布族的多重假设检验,另一种是非参数检验。参数方法在文献中很新颖,与更多问题--自然物体检测和异常检测--相关。我们分别介绍了这两种方法的数学背景,利用它们建立了自给自足的检测算法,并讨论了其实现的实际问题。我们还将我们的算法与其他算法以及使用卫星数据的标准机器学习算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Environmetrics
Environmetrics 环境科学-环境科学
CiteScore
2.90
自引率
17.60%
发文量
67
审稿时长
18-36 weeks
期刊介绍: Environmetrics, the official journal of The International Environmetrics Society (TIES), an Association of the International Statistical Institute, is devoted to the dissemination of high-quality quantitative research in the environmental sciences. The journal welcomes pertinent and innovative submissions from quantitative disciplines developing new statistical and mathematical techniques, methods, and theories that solve modern environmental problems. Articles must proffer substantive, new statistical or mathematical advances to answer important scientific questions in the environmental sciences, or must develop novel or enhanced statistical methodology with clear applications to environmental science. New methods should be illustrated with recent environmental data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信