Clara Simon, Antoine Fort, Diane Jouanneau, Marcus McHale, Ronan Sulpice
{"title":"Fast screening method to identify salinity tolerant strains of foliose Ulva species. Low salinity leads to increased organic matter of the biomass","authors":"Clara Simon, Antoine Fort, Diane Jouanneau, Marcus McHale, Ronan Sulpice","doi":"10.1007/s10811-024-03222-0","DOIUrl":null,"url":null,"abstract":"<p>Sea lettuce (<i>Ulva</i>) is recognised for its potential in food, pharmaceutical, nutraceutical, biorefinery and bioremediation industries and is increasingly being cultivated. The requirements of those industries vary widely in terms of biomass composition. <i>Ulva</i> biomass composition and growth is known to be directly influenced by environmental factors, e.g., temperature, light, salinity, nutrient availability as well as by genetic factors and likely by microbiome composition. In order to select for the highest yielding strains in a given environment, we tested the suitability of common-garden experiments, i.e., the co-cultivation of different strains grown under shared conditions. Fifteen strains from six different foliose <i>Ulva</i> species were grown together under two different salinities, 35 ppt and 15 ppt. After 32 days, only <i>U. australis</i> strains remained at both salinities. If selection at low salinity was mostly based on survival, the selection process at seawater salinity was driven by competition, largely based on growth performance. Growth rates after a month were very similar at both salinities, suggesting the <i>U. australis</i> strains cope equally well in either condition. However, the composition of the biomass produced in both environments varied, with the content of all organic compounds being higher at low salinity, and the ash content being reduced in average by 66%. To summarize, this study provides an established bulk-selection protocol for efficiently screening large numbers of locally-sourced strains and highlights the potential of low salinity treatments for increased organic matter content, particularly in carbohydrates.</p>","PeriodicalId":15086,"journal":{"name":"Journal of Applied Phycology","volume":"91 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Phycology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10811-024-03222-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Sea lettuce (Ulva) is recognised for its potential in food, pharmaceutical, nutraceutical, biorefinery and bioremediation industries and is increasingly being cultivated. The requirements of those industries vary widely in terms of biomass composition. Ulva biomass composition and growth is known to be directly influenced by environmental factors, e.g., temperature, light, salinity, nutrient availability as well as by genetic factors and likely by microbiome composition. In order to select for the highest yielding strains in a given environment, we tested the suitability of common-garden experiments, i.e., the co-cultivation of different strains grown under shared conditions. Fifteen strains from six different foliose Ulva species were grown together under two different salinities, 35 ppt and 15 ppt. After 32 days, only U. australis strains remained at both salinities. If selection at low salinity was mostly based on survival, the selection process at seawater salinity was driven by competition, largely based on growth performance. Growth rates after a month were very similar at both salinities, suggesting the U. australis strains cope equally well in either condition. However, the composition of the biomass produced in both environments varied, with the content of all organic compounds being higher at low salinity, and the ash content being reduced in average by 66%. To summarize, this study provides an established bulk-selection protocol for efficiently screening large numbers of locally-sourced strains and highlights the potential of low salinity treatments for increased organic matter content, particularly in carbohydrates.
期刊介绍:
The Journal of Applied Phycology publishes work on the rapidly expanding subject of the commercial use of algae.
The journal accepts submissions on fundamental research, development of techniques and practical applications in such areas as algal and cyanobacterial biotechnology and genetic engineering, tissues culture, culture collections, commercially useful micro-algae and their products, mariculture, algalization and soil fertility, pollution and fouling, monitoring, toxicity tests, toxic compounds, antibiotics and other biologically active compounds.
Each issue of the Journal of Applied Phycology also includes a short section for brief notes and general information on new products, patents and company news.