Dillon Merenich, Brendan Leung, Gaurab Rijal, Xueying Lu, Scott Doran, Gongxiaohui Chen, Wanming Liu, Chunguang Jing, John Power, Charles Whiteford, Eric Wisniewski
{"title":"Breakdown insensitive acceleration regime in a metamaterial accelerating structure","authors":"Dillon Merenich, Brendan Leung, Gaurab Rijal, Xueying Lu, Scott Doran, Gongxiaohui Chen, Wanming Liu, Chunguang Jing, John Power, Charles Whiteford, Eric Wisniewski","doi":"10.1103/physrevaccelbeams.27.041301","DOIUrl":null,"url":null,"abstract":"A new regime in radiofrequency (rf) breakdown, named the breakdown insensitive acceleration regime (BIAR), was observed in an 11.7 GHz metamaterial structure for wakefield acceleration driven by rf pulses with a duration of a few nanoseconds. In the BIAR, rf breakdown occurs without interrupting potential beam acceleration, resulting in greater resilience to breakdown. We have investigated the possibility that BIAR can support higher gradients by characterizing the breakdown in a high-power test. The peak gradient reached <math display=\"inline\" xmlns=\"http://www.w3.org/1998/Math/MathML\"><mrow><mn>190</mn><mtext> </mtext><mtext> </mtext><mi>MV</mi><mo>/</mo><mi mathvariant=\"normal\">m</mi></mrow></math> when the structure was powered by 6 ns long rf pulses with 115 MW peak power. The short rf pulses were extracted from 65 MeV electron bunch trains with a total charge of up to 210 nC. This work has revealed the benefits of short-pulse acceleration by characterizing rf breakdown in the previously unexplored parameter space.","PeriodicalId":54297,"journal":{"name":"Physical Review Accelerators and Beams","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-04-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Accelerators and Beams","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevaccelbeams.27.041301","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
Abstract
A new regime in radiofrequency (rf) breakdown, named the breakdown insensitive acceleration regime (BIAR), was observed in an 11.7 GHz metamaterial structure for wakefield acceleration driven by rf pulses with a duration of a few nanoseconds. In the BIAR, rf breakdown occurs without interrupting potential beam acceleration, resulting in greater resilience to breakdown. We have investigated the possibility that BIAR can support higher gradients by characterizing the breakdown in a high-power test. The peak gradient reached when the structure was powered by 6 ns long rf pulses with 115 MW peak power. The short rf pulses were extracted from 65 MeV electron bunch trains with a total charge of up to 210 nC. This work has revealed the benefits of short-pulse acceleration by characterizing rf breakdown in the previously unexplored parameter space.
期刊介绍:
Physical Review Special Topics - Accelerators and Beams (PRST-AB) is a peer-reviewed, purely electronic journal, distributed without charge to readers and funded by sponsors from national and international laboratories and other partners. The articles are published by the American Physical Society under the terms of the Creative Commons Attribution 3.0 License.
It covers the full range of accelerator science and technology; subsystem and component technologies; beam dynamics; accelerator applications; and design, operation, and improvement of accelerators used in science and industry. This includes accelerators for high-energy and nuclear physics, synchrotron-radiation production, spallation neutron sources, medical therapy, and intense-beam applications.