Mumford representation and Riemann-Roch space of a divisor on a hyperelliptic curve

Giovanni Falcone, Giuseppe Filippone
{"title":"Mumford representation and Riemann-Roch space of a divisor on a hyperelliptic curve","authors":"Giovanni Falcone, Giuseppe Filippone","doi":"10.1007/s12095-024-00713-2","DOIUrl":null,"url":null,"abstract":"<p>For an (imaginary) hyperelliptic curve <span>\\(\\mathcal {H}\\)</span> of genus <i>g</i>, with a Weierstrass point <span>\\(\\Omega \\)</span>, taken as the point at infinity, we determine a basis of the Riemann-Roch space <span>\\(\\mathcal {L}(\\Delta + m \\Omega )\\)</span>, where <span>\\(\\Delta \\)</span> is of degree zero, directly from the Mumford representation of <span>\\(\\Delta \\)</span>. This provides in turn a generating matrix of a Goppa code.</p>","PeriodicalId":10788,"journal":{"name":"Cryptography and Communications","volume":"27 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cryptography and Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12095-024-00713-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For an (imaginary) hyperelliptic curve \(\mathcal {H}\) of genus g, with a Weierstrass point \(\Omega \), taken as the point at infinity, we determine a basis of the Riemann-Roch space \(\mathcal {L}(\Delta + m \Omega )\), where \(\Delta \) is of degree zero, directly from the Mumford representation of \(\Delta \). This provides in turn a generating matrix of a Goppa code.

超椭圆曲线上除数的姆福德表示和黎曼-罗赫空间
对于一条属g的(虚)超椭圆曲线(\mathcal {H}\),有一个魏尔斯特拉斯点(Weierstrass point \(\Omega\)),取为无穷远处的点;我们直接从\(\Delta \)的芒福德表示法确定黎曼-罗赫空间(Riemann-Roch space)\(\mathcal {L}(\Delta + m \Omega )\)的基,其中\(\Delta \)为零度。这反过来又提供了一个戈帕编码的生成矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信