{"title":"Local Time Pushed Mixed Equilibrium Strategies for Time-Inconsistent Stopping Problems","authors":"Andi Bodnariu, Sören Christensen, Kristoffer Lindensjö","doi":"10.1137/22m1506651","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Control and Optimization, Volume 62, Issue 2, Page 1261-1290, April 2024. <br/> Abstract. We consider the game-theoretic approach to time-inconsistent stopping of a one-dimensional diffusion where the time-inconsistency is due to the presence of a nonexponential (weighted) discount function. In particular, we study (weak) equilibria for this problem in a novel class of mixed (i.e., randomized) stopping times based on a local time construction of the stopping intensity. For a general formulation of the problem we provide a verification theorem giving sufficient conditions for mixed (and pure) equilibria in terms of a set of variational inequalities, including a smooth fit condition. We apply the theory to prove the existence of (mixed) equilibria in a recently studied real options problem in which no pure equilibria exist.","PeriodicalId":49531,"journal":{"name":"SIAM Journal on Control and Optimization","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Control and Optimization","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1506651","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
SIAM Journal on Control and Optimization, Volume 62, Issue 2, Page 1261-1290, April 2024. Abstract. We consider the game-theoretic approach to time-inconsistent stopping of a one-dimensional diffusion where the time-inconsistency is due to the presence of a nonexponential (weighted) discount function. In particular, we study (weak) equilibria for this problem in a novel class of mixed (i.e., randomized) stopping times based on a local time construction of the stopping intensity. For a general formulation of the problem we provide a verification theorem giving sufficient conditions for mixed (and pure) equilibria in terms of a set of variational inequalities, including a smooth fit condition. We apply the theory to prove the existence of (mixed) equilibria in a recently studied real options problem in which no pure equilibria exist.
期刊介绍:
SIAM Journal on Control and Optimization (SICON) publishes original research articles on the mathematics and applications of control theory and certain parts of optimization theory. Papers considered for publication must be significant at both the mathematical level and the level of applications or potential applications. Papers containing mostly routine mathematics or those with no discernible connection to control and systems theory or optimization will not be considered for publication. From time to time, the journal will also publish authoritative surveys of important subject areas in control theory and optimization whose level of maturity permits a clear and unified exposition.
The broad areas mentioned above are intended to encompass a wide range of mathematical techniques and scientific, engineering, economic, and industrial applications. These include stochastic and deterministic methods in control, estimation, and identification of systems; modeling and realization of complex control systems; the numerical analysis and related computational methodology of control processes and allied issues; and the development of mathematical theories and techniques that give new insights into old problems or provide the basis for further progress in control theory and optimization. Within the field of optimization, the journal focuses on the parts that are relevant to dynamic and control systems. Contributions to numerical methodology are also welcome in accordance with these aims, especially as related to large-scale problems and decomposition as well as to fundamental questions of convergence and approximation.