Advancing 90-day mortality and anastomotic leakage predictions after oesophagectomy for cancer using explainable AI (XAI)

Sebastian Djerf, Oscar Åkesson, Magnus Nilsson, Mats Lindblad, Jakob Hedberg, Jan Johansson, Attila Frigyesi
{"title":"Advancing 90-day mortality and anastomotic leakage predictions after oesophagectomy for cancer using explainable AI (XAI)","authors":"Sebastian Djerf, Oscar Åkesson, Magnus Nilsson, Mats Lindblad, Jakob Hedberg, Jan Johansson, Attila Frigyesi","doi":"10.1101/2024.04.09.24305451","DOIUrl":null,"url":null,"abstract":"Oesophagectomy for cancer of the oesophagus carries significant morbidity and mortality. Ninety-day mortality and anastomosis leakage are critical early postoperative problems traditionally analysed through logistic regression. In this study, we challenge traditional logistic regression models to predict results with new explainable AI (XAI) models. We used the Swedish National Quality Register for Oesophageal and Gastric Cancer (NREV) to perform traditional multivariable logistic regression and XAI. The 90-day mortality was 6.0%, while anastomosis leakage was present in 12.4%. The XAI models yielded an area under the curve (AUC) of 0.91 for 90-day mortality (as compared with 0.84 for logistic regression). For anastomosis leakage, the AUC was 0.84 using XAI (0.74 using logistic regression). We show that age (mortality increases sharply after 55 years) and body mass index (BMI) (lowest mortality for BMI 30 kg/m<sup>2</sup>) are important survival factors. Additionally, we show that surgery time (minimum anastomosis leakage for a surgery time of 200 min to sharply increase to a maximum at 375 min) and BMI (the lower the BMI, the less anastomosis leakage) are important factors for anastomosis leakage. The surgical understanding of anastomosis leakage and mortality after oesophagectomy is advanced by judiciously applying XAI to structured data. Our nationwide oesophagectomy data contains significant nonlinear relationships. With the help of XAI, we extract personalised knowledge, bringing oesophagus surgery one step closer to personalised medicine.","PeriodicalId":501051,"journal":{"name":"medRxiv - Surgery","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"medRxiv - Surgery","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2024.04.09.24305451","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Oesophagectomy for cancer of the oesophagus carries significant morbidity and mortality. Ninety-day mortality and anastomosis leakage are critical early postoperative problems traditionally analysed through logistic regression. In this study, we challenge traditional logistic regression models to predict results with new explainable AI (XAI) models. We used the Swedish National Quality Register for Oesophageal and Gastric Cancer (NREV) to perform traditional multivariable logistic regression and XAI. The 90-day mortality was 6.0%, while anastomosis leakage was present in 12.4%. The XAI models yielded an area under the curve (AUC) of 0.91 for 90-day mortality (as compared with 0.84 for logistic regression). For anastomosis leakage, the AUC was 0.84 using XAI (0.74 using logistic regression). We show that age (mortality increases sharply after 55 years) and body mass index (BMI) (lowest mortality for BMI 30 kg/m2) are important survival factors. Additionally, we show that surgery time (minimum anastomosis leakage for a surgery time of 200 min to sharply increase to a maximum at 375 min) and BMI (the lower the BMI, the less anastomosis leakage) are important factors for anastomosis leakage. The surgical understanding of anastomosis leakage and mortality after oesophagectomy is advanced by judiciously applying XAI to structured data. Our nationwide oesophagectomy data contains significant nonlinear relationships. With the help of XAI, we extract personalised knowledge, bringing oesophagus surgery one step closer to personalised medicine.
利用可解释人工智能(XAI)推进癌症食管切除术后 90 天死亡率和吻合口漏的预测工作
食道癌食道切除术的发病率和死亡率都很高。九十天死亡率和吻合口漏是传统上通过逻辑回归分析的术后早期关键问题。在这项研究中,我们采用新的可解释人工智能(XAI)模型来预测结果,对传统的逻辑回归模型提出了挑战。我们利用瑞典国家食管癌和胃癌质量登记册(NREV)进行了传统的多变量逻辑回归和 XAI 分析。90天死亡率为6.0%,吻合口漏率为12.4%。XAI 模型的 90 天死亡率曲线下面积 (AUC) 为 0.91(逻辑回归为 0.84)。对于吻合口漏,XAI 的 AUC 为 0.84(逻辑回归为 0.74)。我们发现,年龄(55 岁以后死亡率急剧上升)和体重指数(BMI)(BMI 为 30 kg/m2 时死亡率最低)是重要的生存因素。此外,我们还发现手术时间(手术时间为 200 分钟时吻合口漏最少,375 分钟时吻合口漏最多)和体重指数(体重指数越低,吻合口漏越少)是影响吻合口漏的重要因素。通过对结构化数据明智地应用 XAI,可促进对食管切除术后吻合口漏和死亡率的外科理解。我们的全国食道切除术数据包含重要的非线性关系。在 XAI 的帮助下,我们提取出了个性化知识,使食道外科离个性化医疗更近了一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信