A. S. El-Houssiny, A. A. F. Soliman, K. N. Abdel-Nour
{"title":"Assessment of the cytotoxic effect of carboxymethyl chitosan-loaded amygdalin nanoparticles against human normal and cancer cell lines","authors":"A. S. El-Houssiny, A. A. F. Soliman, K. N. Abdel-Nour","doi":"10.1186/s11671-024-03998-7","DOIUrl":null,"url":null,"abstract":"<p>In recent years, the development of antitumor drugs has been dedicated to natural products. Amygdalin is a natural herbal cyanoglycoside that has anticarcinogenic effect on many types of cancers once hydrogen cyanide (HCN) is released. The main objective of the present study is to synthesize and investigate the potential of carboxymethyl chitosan nanoparticles (CMC NPs) as drug delivery agents for amygdalin encapsulation and its delivery to cancer and normal cell lines. In this study, carboxymethyl chitosan nanoparticles encapsulated with amygdalin (CMC-Am NPs) were prepared and characterized through their particle size, surface charge, chemical structure and dielectric properties. Also, the <i>invitro</i> drug release of amygdalin from CMC NPs was studied. Additionally, the cytotoxcity of the amygdalin and CMC-loaded amygdalin NPs were evaluated through MTT assay. The results showed that the prepared CMC-loaded amygdalin NPs exhibited a small particle size of 129 nm, high zeta potential value of − 43 mV and confirmed the amygdalin stability and compatibility with CMC NPs. Furthermore, the CMC NPs demonstrated sustained release of amygdalin during 24 h. Moreover, compared to free amygdalin, amygdalin-loaded CMC NPs have significant anti-cancerous effect on human colon HCT-116 and breast MCF-7 cancer cell lines while being safe on normal cells BJ1. In conclusion, CMC NPs can be employed as an efficient drug delivery vehicle for controlled and sustained amygdalin release with enhanced cytotoxicity on malignant cells without harming normal cells.</p>","PeriodicalId":715,"journal":{"name":"Nanoscale Research Letters","volume":"49 1","pages":""},"PeriodicalIF":4.7030,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Research Letters","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s11671-024-03998-7","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In recent years, the development of antitumor drugs has been dedicated to natural products. Amygdalin is a natural herbal cyanoglycoside that has anticarcinogenic effect on many types of cancers once hydrogen cyanide (HCN) is released. The main objective of the present study is to synthesize and investigate the potential of carboxymethyl chitosan nanoparticles (CMC NPs) as drug delivery agents for amygdalin encapsulation and its delivery to cancer and normal cell lines. In this study, carboxymethyl chitosan nanoparticles encapsulated with amygdalin (CMC-Am NPs) were prepared and characterized through their particle size, surface charge, chemical structure and dielectric properties. Also, the invitro drug release of amygdalin from CMC NPs was studied. Additionally, the cytotoxcity of the amygdalin and CMC-loaded amygdalin NPs were evaluated through MTT assay. The results showed that the prepared CMC-loaded amygdalin NPs exhibited a small particle size of 129 nm, high zeta potential value of − 43 mV and confirmed the amygdalin stability and compatibility with CMC NPs. Furthermore, the CMC NPs demonstrated sustained release of amygdalin during 24 h. Moreover, compared to free amygdalin, amygdalin-loaded CMC NPs have significant anti-cancerous effect on human colon HCT-116 and breast MCF-7 cancer cell lines while being safe on normal cells BJ1. In conclusion, CMC NPs can be employed as an efficient drug delivery vehicle for controlled and sustained amygdalin release with enhanced cytotoxicity on malignant cells without harming normal cells.
期刊介绍:
Nanoscale Research Letters (NRL) provides an interdisciplinary forum for communication of scientific and technological advances in the creation and use of objects at the nanometer scale. NRL is the first nanotechnology journal from a major publisher to be published with Open Access.