Quasi-abelian group as automorphism group of Riemann surfaces

Pub Date : 2024-04-03 DOI:10.1007/s00229-024-01552-4
Rubén A. Hidalgo, Yerika L. Marín Montilla, Saúl Quispe
{"title":"Quasi-abelian group as automorphism group of Riemann surfaces","authors":"Rubén A. Hidalgo, Yerika L. Marín Montilla, Saúl Quispe","doi":"10.1007/s00229-024-01552-4","DOIUrl":null,"url":null,"abstract":"<p>Conformal/anticonformal actions of the quasi-abelian group <span>\\(QA_{n}\\)</span> of order <span>\\(2^n\\)</span>, for <span>\\(n\\ge 4\\)</span>, on closed Riemann surfaces, pseudo-real Riemann surfaces and closed Klein surfaces are considered. We obtain several consequences, such as the solution of the minimum genus problem for the <span>\\(QA_n\\)</span>-actions, and for each of these actions, we study the topological rigidity action problem. In the case of pseudo-real Riemann surfaces, attention was typically restricted to group actions that admit anticonformal elements. In this paper, we consider two cases: either <span>\\(QA_n\\)</span> has anticonformal elements or only contains conformal elements.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01552-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Conformal/anticonformal actions of the quasi-abelian group \(QA_{n}\) of order \(2^n\), for \(n\ge 4\), on closed Riemann surfaces, pseudo-real Riemann surfaces and closed Klein surfaces are considered. We obtain several consequences, such as the solution of the minimum genus problem for the \(QA_n\)-actions, and for each of these actions, we study the topological rigidity action problem. In the case of pseudo-real Riemann surfaces, attention was typically restricted to group actions that admit anticonformal elements. In this paper, we consider two cases: either \(QA_n\) has anticonformal elements or only contains conformal elements.

分享
查看原文
作为黎曼曲面自变群的准阿贝尔群
对于 \(n\ge 4\), 我们考虑了阶为 \(2^n\) 的准阿贝尔群 \(QA_{n}\) 在封闭黎曼曲面、伪实黎曼曲面和封闭克莱因曲面上的共形/反共形作用。我们得到了一些结果,比如 \(QA_n\) 作用的最小属问题的解,而且对于每一种作用,我们都研究了拓扑刚度作用问题。在伪实黎曼曲面的情况下,人们的注意力通常局限于接纳反形式元素的群作用。在本文中,我们考虑了两种情况:要么 \(QA_n\) 有反形式元素,要么只包含共形元素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信