Some functional inequalities under lower Bakry–Émery–Ricci curvature bounds with $${\varepsilon }$$ -range

Pub Date : 2024-04-02 DOI:10.1007/s00229-024-01537-3
Yasuaki Fujitani
{"title":"Some functional inequalities under lower Bakry–Émery–Ricci curvature bounds with $${\\varepsilon }$$ -range","authors":"Yasuaki Fujitani","doi":"10.1007/s00229-024-01537-3","DOIUrl":null,"url":null,"abstract":"<p>For <i>n</i>-dimensional weighted Riemannian manifolds, lower <i>m</i>-Bakry–Émery–Ricci curvature bounds with <span>\\({\\varepsilon }\\)</span>-range, introduced by Lu-Minguzzi-Ohta (Anal Geom Metr Spaces 10(1):1–30, 2022), integrate constant lower bounds and certain variable lower bounds in terms of weight functions. In this paper, we prove a Cheng type inequality and a local Sobolev inequality under lower <i>m</i>-Bakry–Émery–Ricci curvature bounds with <span>\\({\\varepsilon }\\)</span>-range. These generalize those inequalities under constant curvature bounds for <span>\\(m \\in (n,\\infty )\\)</span> to <span>\\(m\\in (-\\infty ,1]\\cup \\{\\infty \\}\\)</span>.\n</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s00229-024-01537-3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

For n-dimensional weighted Riemannian manifolds, lower m-Bakry–Émery–Ricci curvature bounds with \({\varepsilon }\)-range, introduced by Lu-Minguzzi-Ohta (Anal Geom Metr Spaces 10(1):1–30, 2022), integrate constant lower bounds and certain variable lower bounds in terms of weight functions. In this paper, we prove a Cheng type inequality and a local Sobolev inequality under lower m-Bakry–Émery–Ricci curvature bounds with \({\varepsilon }\)-range. These generalize those inequalities under constant curvature bounds for \(m \in (n,\infty )\) to \(m\in (-\infty ,1]\cup \{\infty \}\).

分享
查看原文
具有 $${{v\arepsilon }$$ 范围的 Bakry-Émery-Ricci 曲率下限下的一些函数不等式
对于 n 维加权黎曼流形,Lu-Minguzzi-Ohta(Anal Geom Metr Spaces 10(1):1-30,2022)提出的具有 \({\varepsilon }\)-range 的下 m-Bakry-Émery-Ricci 曲率界值,以权重函数的形式整合了常数下界和某些变量下界。在本文中,我们证明了具有 \({v\arepsilon }\)-range 的 m-Bakry-Émery-Ricci 曲率下限下的 Cheng 型不等式和局部 Sobolev 不等式。这些将恒定曲率边界下的(m (n,\infty ))不等式推广到(m (-\infty ,1]\cup \\{infty \})。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信