Mohamed Kchaou, Sujin Jose Arul, A. Athijayamani, Priyabrata Adhikary, S. Murugan, Faisal Khaled Aldawood, Hussain F. Abualkhair
{"title":"Water absorption and mechanical behaviour of green fibres and particles acting as reinforced hybrid composite materials","authors":"Mohamed Kchaou, Sujin Jose Arul, A. Athijayamani, Priyabrata Adhikary, S. Murugan, Faisal Khaled Aldawood, Hussain F. Abualkhair","doi":"10.2478/msp-2023-0051","DOIUrl":null,"url":null,"abstract":"This paper highlights the results of an experimental study on the preparation and characterization of <jats:italic>Luffa cylindrica</jats:italic> fiber (LCF) and groundnut shell particle (GSP) reinforced phenol-formaldehyde (PF) hybrid composites. The amount of LCFs was fixed at 25 wt%, while the amount of groundnut shell particles ranged from 0 to 25 wt%. Observations were made regarding the water absorption and thickness swelling behaviour of prepared hybrid composites. In addition, the mechanical behaviours of hybrid composites have been studied under both dry and wet conditions. In comparison to dry conditions, the mechanical properties of the hybrid composites were lower when they were wet. Hybrid composites comprising 25% <jats:italic>Luffa cylindica</jats:italic> fibre and 15% groundnut shell particle (25LCF/15GSP) exhibit the highest level of mechanical properties under both conditions. The percentages of water absorption and thickness swelling increase as groundnut shell particles increase. The composite 25LCF/25GSP exhibited the highest percentage of water absorption and thickness swelling. Compared to date palm leaf (DPL)-reinforced composites, 25LCF/15GSP showed more significant mechanical and physical properties. We concluded that the inclusion of groundnut shell particles in LCF/PF composites substantially improved the mechanical properties of the hybrid composite. The range of increment, however, was narrower under moist conditions compared to dry conditions.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"20 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-Poland","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/msp-2023-0051","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
This paper highlights the results of an experimental study on the preparation and characterization of Luffa cylindrica fiber (LCF) and groundnut shell particle (GSP) reinforced phenol-formaldehyde (PF) hybrid composites. The amount of LCFs was fixed at 25 wt%, while the amount of groundnut shell particles ranged from 0 to 25 wt%. Observations were made regarding the water absorption and thickness swelling behaviour of prepared hybrid composites. In addition, the mechanical behaviours of hybrid composites have been studied under both dry and wet conditions. In comparison to dry conditions, the mechanical properties of the hybrid composites were lower when they were wet. Hybrid composites comprising 25% Luffa cylindica fibre and 15% groundnut shell particle (25LCF/15GSP) exhibit the highest level of mechanical properties under both conditions. The percentages of water absorption and thickness swelling increase as groundnut shell particles increase. The composite 25LCF/25GSP exhibited the highest percentage of water absorption and thickness swelling. Compared to date palm leaf (DPL)-reinforced composites, 25LCF/15GSP showed more significant mechanical and physical properties. We concluded that the inclusion of groundnut shell particles in LCF/PF composites substantially improved the mechanical properties of the hybrid composite. The range of increment, however, was narrower under moist conditions compared to dry conditions.
期刊介绍:
Material Sciences-Poland is an interdisciplinary journal devoted to experimental research into results on the relationships between structure, processing, properties, technology, and uses of materials. Original research articles and review can be only submitted.