Residual fly ash from pyrometallurgical processes as a partial replacement for Portland cement in mortars: a study of structural evolution and determination of compressive strength
IF 1.3 4区 材料科学Q4 MATERIALS SCIENCE, MULTIDISCIPLINARY
J. C. Juarez-Tapia, H. García-Ortiz, M. Pérez-Labra, J. A. Romero-Serrano, M. Reyes-Pérez, A. Hernández-Ramirez, V. Acosta-Sanchez, A.M. Teja-Ruiz, I.A. Reyes-Dominguez
{"title":"Residual fly ash from pyrometallurgical processes as a partial replacement for Portland cement in mortars: a study of structural evolution and determination of compressive strength","authors":"J. C. Juarez-Tapia, H. García-Ortiz, M. Pérez-Labra, J. A. Romero-Serrano, M. Reyes-Pérez, A. Hernández-Ramirez, V. Acosta-Sanchez, A.M. Teja-Ruiz, I.A. Reyes-Dominguez","doi":"10.2478/msp-2023-0050","DOIUrl":null,"url":null,"abstract":"Mortar mixtures were prepared by partial replacement of Portland cement with 0%, 10%, and 15% of residual fly ash to determine the structural evolution and compressive strength at 3, 7, 14, and 28 days. Portlandite, calcite, ettringite, iron oxide, silicon oxide, and sillimanite were identified in the standard mortar, and, additionally, magnetite was identified in the mortar with 10% and 15% fly ash. X-ray diffraction peaks corresponding to portlandite and ettringite increased in intensity with increasing curing time as a result of the consolidation of mineral species. The SEM analysis revealed that the standard mortar contained mainly portlandite and ettringite at 28 days, while the samples with 10% and 15% fly ash contained particles of fly ash coated with portlandite and ettringite, particles with a smooth surface, and particles of fly ash with signs of attack on their surfaces. The sc increased when the age of the mortar and the substitution of Portland cement by fly ash was increased from 3 to 28 days and from 0 to 15%, respectively.","PeriodicalId":18269,"journal":{"name":"Materials Science-Poland","volume":"67 1","pages":""},"PeriodicalIF":1.3000,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science-Poland","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.2478/msp-2023-0050","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Mortar mixtures were prepared by partial replacement of Portland cement with 0%, 10%, and 15% of residual fly ash to determine the structural evolution and compressive strength at 3, 7, 14, and 28 days. Portlandite, calcite, ettringite, iron oxide, silicon oxide, and sillimanite were identified in the standard mortar, and, additionally, magnetite was identified in the mortar with 10% and 15% fly ash. X-ray diffraction peaks corresponding to portlandite and ettringite increased in intensity with increasing curing time as a result of the consolidation of mineral species. The SEM analysis revealed that the standard mortar contained mainly portlandite and ettringite at 28 days, while the samples with 10% and 15% fly ash contained particles of fly ash coated with portlandite and ettringite, particles with a smooth surface, and particles of fly ash with signs of attack on their surfaces. The sc increased when the age of the mortar and the substitution of Portland cement by fly ash was increased from 3 to 28 days and from 0 to 15%, respectively.
期刊介绍:
Material Sciences-Poland is an interdisciplinary journal devoted to experimental research into results on the relationships between structure, processing, properties, technology, and uses of materials. Original research articles and review can be only submitted.