Cut-and-join operators in cohomological field theory and topological recursion

Alexander Alexandrov
{"title":"Cut-and-join operators in cohomological field theory and topological recursion","authors":"Alexander Alexandrov","doi":"10.1007/s00029-024-00933-7","DOIUrl":null,"url":null,"abstract":"<p>We construct a cubic cut-and-join operator description for the partition function of the Chekhov–Eynard–Orantin topological recursion for a local spectral curve with simple ramification points. In particular, this class contains partition functions of all semi-simple cohomological field theories. The cut-and-join description leads to an algebraic version of topological recursion. For the same partition functions we also derive N families of the Virasoro constraints and prove that these constraints, supplemented by a deformed dimension constraint, imply the cut-and-join description.</p>","PeriodicalId":501600,"journal":{"name":"Selecta Mathematica","volume":"96 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Selecta Mathematica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00029-024-00933-7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We construct a cubic cut-and-join operator description for the partition function of the Chekhov–Eynard–Orantin topological recursion for a local spectral curve with simple ramification points. In particular, this class contains partition functions of all semi-simple cohomological field theories. The cut-and-join description leads to an algebraic version of topological recursion. For the same partition functions we also derive N families of the Virasoro constraints and prove that these constraints, supplemented by a deformed dimension constraint, imply the cut-and-join description.

同调场论和拓扑递归中的割接算子
我们为具有简单夯点的局部谱曲线的契科夫-艾纳德-奥兰廷拓扑递归的分割函数构建了一个立方切接算子描述。特别是,这一类包含了所有半简单同调场论的分割函数。割接描述引出了拓扑递归的代数版本。对于相同的分治函数,我们还推导出了 N 个维拉索罗约束族,并证明这些约束在变形维数约束的补充下,意味着割接描述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信