An Anisotropic Strength Equivalent Model of the Step Interlayered Rock Mass in the Muzhailing Tunnel

IF 0.8 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL
Borong Li, Zhipeng Fu, Changling Han, Lei Wang, Bowen Ni
{"title":"An Anisotropic Strength Equivalent Model of the Step Interlayered Rock Mass in the Muzhailing Tunnel","authors":"Borong Li, Zhipeng Fu, Changling Han, Lei Wang, Bowen Ni","doi":"10.1007/s11204-024-09945-z","DOIUrl":null,"url":null,"abstract":"<p>The Muzhailing Tunnel, Gansu Province, China, runs for most (84.5%) of its length through layered slate. To study the mechanical properties of rock masses containing interbedded soft and hard layers, mechanical tests were conducted in the laboratory on hard limestone and soft carbonaceous slate. To simplify the application of mechanical analysis, an equivalent alternative strength model for soft and hard media was derived based on the strain energy equivalence criterion and the Mohr–Coulomb strength theory, and expressions for calculating the ultimate equilibrium stress point and failure azimuth were obtained. Based on the strength differences between soft- and hard-rock layers, an equivalent substitution calculation model was established for different thickness ratios and stress conditions with a strength ratio of 4:1. The influence of the thickness ratio and stress state on the ultimate stress curve was analyzed.</p>","PeriodicalId":21918,"journal":{"name":"Soil Mechanics and Foundation Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Mechanics and Foundation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11204-024-09945-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

Abstract

The Muzhailing Tunnel, Gansu Province, China, runs for most (84.5%) of its length through layered slate. To study the mechanical properties of rock masses containing interbedded soft and hard layers, mechanical tests were conducted in the laboratory on hard limestone and soft carbonaceous slate. To simplify the application of mechanical analysis, an equivalent alternative strength model for soft and hard media was derived based on the strain energy equivalence criterion and the Mohr–Coulomb strength theory, and expressions for calculating the ultimate equilibrium stress point and failure azimuth were obtained. Based on the strength differences between soft- and hard-rock layers, an equivalent substitution calculation model was established for different thickness ratios and stress conditions with a strength ratio of 4:1. The influence of the thickness ratio and stress state on the ultimate stress curve was analyzed.

木寨岭隧道阶梯夹层岩体的各向异性强度等效模型
中国甘肃省的木寨岭隧道大部分长度(84.5%)穿越层状板岩。为了研究含有软硬夹层的岩体的力学特性,在实验室对坚硬的石灰岩和软质碳质板岩进行了力学测试。为了简化力学分析的应用,根据应变能等效准则和莫尔-库仑强度理论推导出了软硬介质的等效替代强度模型,并获得了计算极限平衡应力点和破坏方位角的表达式。根据软硬岩层的强度差异,建立了不同厚度比和应力条件下的等效替代计算模型,强度比为 4:1。分析了厚度比和应力状态对极限应力曲线的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6 months
期刊介绍: Soil Mechanics and Foundation Engineering provides the Western engineer with a look at Russian advances in heavy construction techniques. Detailed contributions by experienced civil engineers offer insights into current difficulties in the field, applicable innovative solutions, and recently developed guidelines for soil analysis and foundation design.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信