Gapsets and the k-generalized Fibonacci sequences

IF 0.5 2区 数学 Q3 MATHEMATICS
Gilberto B. Almeida Filho, Matheus Bernardini
{"title":"Gapsets and the k-generalized Fibonacci sequences","authors":"Gilberto B. Almeida Filho, Matheus Bernardini","doi":"10.1142/s0218196724500085","DOIUrl":null,"url":null,"abstract":"<p>We bring the terminology of the Kunz coordinates of numerical semigroups to gapsets and we generalize this concept to <i>m</i>-extensions. It allows us to identify gapsets and, in general, <i>m</i>-extensions with tilings of boards; as a consequence, we present some applications of this identification. Moreover, we present explicit formulas for the number of gapsets with fixed genus and depth, when the multiplicity is 3 or 4, and, in some cases, for the number of gapsets with fixed genus and depth.</p>","PeriodicalId":13756,"journal":{"name":"International Journal of Algebra and Computation","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Algebra and Computation","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1142/s0218196724500085","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

We bring the terminology of the Kunz coordinates of numerical semigroups to gapsets and we generalize this concept to m-extensions. It allows us to identify gapsets and, in general, m-extensions with tilings of boards; as a consequence, we present some applications of this identification. Moreover, we present explicit formulas for the number of gapsets with fixed genus and depth, when the multiplicity is 3 or 4, and, in some cases, for the number of gapsets with fixed genus and depth.

缺口集和 k 个广义斐波那契序列
我们将数字半群的 Kunz 坐标术语引入间隙集,并将这一概念推广到 m-扩展。这样,我们就能识别间隙集,一般来说,也能识别 m-扩展与棋盘的倾斜;因此,我们介绍了这种识别的一些应用。此外,当多重性为 3 或 4 时,我们给出了具有固定属和深度的隙集数的明确公式,并在某些情况下给出了具有固定属和深度的隙集数的明确公式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
1.20
自引率
12.50%
发文量
66
审稿时长
6-12 weeks
期刊介绍: The International Journal of Algebra and Computation publishes high quality original research papers in combinatorial, algorithmic and computational aspects of algebra (including combinatorial and geometric group theory and semigroup theory, algorithmic aspects of universal algebra, computational and algorithmic commutative algebra, probabilistic models related to algebraic structures, random algebraic structures), and gives a preference to papers in the areas of mathematics represented by the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信