Classification of cyclic groups underlying only smooth skew morphisms

Pub Date : 2024-04-03 DOI:10.1007/s10801-024-01311-4
{"title":"Classification of cyclic groups underlying only smooth skew morphisms","authors":"","doi":"10.1007/s10801-024-01311-4","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>A skew morphism of a finite group <em>A</em> is a permutation <span> <span>\\(\\varphi \\)</span> </span> of <em>A</em> fixing the identity element and for which there is an integer-valued function <span> <span>\\(\\pi \\)</span> </span> on <em>A</em> such that <span> <span>\\(\\varphi (ab)=\\varphi (a)\\varphi ^{\\pi (a)}(b)\\)</span> </span> for all <span> <span>\\(a, b \\in A\\)</span> </span>. A skew morphism <span> <span>\\(\\varphi \\)</span> </span> of <em>A</em> is smooth if the associated power function <span> <span>\\(\\pi \\)</span> </span> is constant on the orbits of <span> <span>\\(\\varphi \\)</span> </span>, that is, <span> <span>\\(\\pi (\\varphi (a))\\equiv \\pi (a)\\pmod {|\\varphi |}\\)</span> </span> for all <span> <span>\\(a\\in A\\)</span> </span>. In this paper, we show that every skew morphism of a cyclic group of order <em>n</em> is smooth if and only if <span> <span>\\(n=2^en_1\\)</span> </span>, where <span> <span>\\(0 \\le e \\le 4\\)</span> </span> and <span> <span>\\(n_1\\)</span> </span> is an odd square-free number. A partial solution to a similar problem on non-cyclic abelian groups is also given.</p>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10801-024-01311-4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A skew morphism of a finite group A is a permutation \(\varphi \) of A fixing the identity element and for which there is an integer-valued function \(\pi \) on A such that \(\varphi (ab)=\varphi (a)\varphi ^{\pi (a)}(b)\) for all \(a, b \in A\) . A skew morphism \(\varphi \) of A is smooth if the associated power function \(\pi \) is constant on the orbits of \(\varphi \) , that is, \(\pi (\varphi (a))\equiv \pi (a)\pmod {|\varphi |}\) for all \(a\in A\) . In this paper, we show that every skew morphism of a cyclic group of order n is smooth if and only if \(n=2^en_1\) , where \(0 \le e \le 4\) and \(n_1\) is an odd square-free number. A partial solution to a similar problem on non-cyclic abelian groups is also given.

分享
查看原文
仅以光滑偏斜变形为基础的循环群的分类
Abstract 有限群 A 的偏斜变形是 A 的一个固定同元素的置换(permutation \(\varphi\)),对于这个置换,A 上有一个整数值函数 \(\pi\),使得 \(\varphi(ab)=\varphi(a)\varphi ^{\pi (a)}(b)\) for all \(a, b \in A\) 。如果相关的幂函数 \(\pi \) 在 \(\varphi \) 的轨道上是常数,即 \(\pi (\varphi (a))\equiv \pi (a)\pmod {|\varphi |}\) for all \(a\in A\) ,那么 A 的倾斜变形 \(\varphi \) 是平稳的。在本文中,我们证明了当且仅当 \(n=2^en_1\) ,其中 \(0 \le e \le 4\) 和 \(n_1\) 是奇数无平方数时,阶数为 n 的循环群的每个倾斜态都是光滑的。此外,还给出了非循环无性系群类似问题的部分解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信