{"title":"Some Sharp Landau–Kolmogorov–Nagy-Type Inequalities in Sobolev Spaces of Multivariate Functions","authors":"","doi":"10.1007/s11253-024-02275-1","DOIUrl":null,"url":null,"abstract":"<p>For a function <em>f</em> from the Sobolev space <em>W</em><sup>1<em>,p</em></sup>(<em>C</em>)<em>,</em> where <em>C</em> ⊂ ℝ<sup><em>d</em></sup> is an open convex cone, we establish a sharp inequality estimating ∥<em>f</em>∥ <sub><em>L</em>∞</sub> via the <em>L</em><sub><em>p</em></sub>-norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the <em>L</em><sub>∞</sub>-norm of the Radon–Nikodym derivative of a charge defined on Lebesgue measurable subsets of <em>C</em> via the <em>L</em><sub><em>p</em></sub>-norm of the gradient of this derivative and the seminorm of the charge. In the case where <em>C</em> = ℝ<sub>+</sub><sup><em>m</em></sup>× ℝ<sup><em>d−m</em></sup><em>,</em> 0 ≤ <em>m</em> ≤ <em>d,</em> we obtain inequalities estimating the <em>L</em><sub>∞</sub>-norm of a mixed derivative of the function <em>f</em> : <em>C →</em> ℝ via its <em>L</em><sub>∞</sub>-norm and the <em>L</em><sub><em>p</em></sub>-norm of the gradient of mixed derivative of this function.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"67 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02275-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
For a function f from the Sobolev space W1,p(C), where C ⊂ ℝd is an open convex cone, we establish a sharp inequality estimating ∥f∥ L∞ via the Lp-norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the L∞-norm of the Radon–Nikodym derivative of a charge defined on Lebesgue measurable subsets of C via the Lp-norm of the gradient of this derivative and the seminorm of the charge. In the case where C = ℝ+m× ℝd−m, 0 ≤ m ≤ d, we obtain inequalities estimating the L∞-norm of a mixed derivative of the function f : C → ℝ via its L∞-norm and the Lp-norm of the gradient of mixed derivative of this function.
期刊介绍:
Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries.
Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.