Some Sharp Landau–Kolmogorov–Nagy-Type Inequalities in Sobolev Spaces of Multivariate Functions

IF 0.5 4区 数学 Q3 MATHEMATICS
{"title":"Some Sharp Landau–Kolmogorov–Nagy-Type Inequalities in Sobolev Spaces of Multivariate Functions","authors":"","doi":"10.1007/s11253-024-02275-1","DOIUrl":null,"url":null,"abstract":"<p>For a function <em>f</em> from the Sobolev space <em>W</em><sup>1<em>,p</em></sup>(<em>C</em>)<em>,</em> where <em>C</em> ⊂ ℝ<sup><em>d</em></sup> is an open convex cone, we establish a sharp inequality estimating ∥<em>f</em>∥ <sub><em>L</em>∞</sub> via the <em>L</em><sub><em>p</em></sub>-norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the <em>L</em><sub>∞</sub>-norm of the Radon–Nikodym derivative of a charge defined on Lebesgue measurable subsets of <em>C</em> via the <em>L</em><sub><em>p</em></sub>-norm of the gradient of this derivative and the seminorm of the charge. In the case where <em>C</em> = ℝ<sub>+</sub><sup><em>m</em></sup>× ℝ<sup><em>d−m</em></sup><em>,</em> 0 ≤ <em>m</em> ≤ <em>d,</em> we obtain inequalities estimating the <em>L</em><sub>∞</sub>-norm of a mixed derivative of the function <em>f</em> : <em>C →</em> ℝ via its <em>L</em><sub>∞</sub>-norm and the <em>L</em><sub><em>p</em></sub>-norm of the gradient of mixed derivative of this function.</p>","PeriodicalId":49406,"journal":{"name":"Ukrainian Mathematical Journal","volume":"67 1","pages":""},"PeriodicalIF":0.5000,"publicationDate":"2024-04-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ukrainian Mathematical Journal","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11253-024-02275-1","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

For a function f from the Sobolev space W1,p(C), where C ⊂ ℝd is an open convex cone, we establish a sharp inequality estimating ∥fL via the Lp-norm of its gradient and a seminorm of the function. With the help of this inequality, we prove a sharp inequality estimating the L-norm of the Radon–Nikodym derivative of a charge defined on Lebesgue measurable subsets of C via the Lp-norm of the gradient of this derivative and the seminorm of the charge. In the case where C = ℝ+m× ℝd−m, 0 ≤ md, we obtain inequalities estimating the L-norm of a mixed derivative of the function f : C → ℝ via its L-norm and the Lp-norm of the gradient of mixed derivative of this function.

多变量函数索波列夫空间中的一些尖锐兰道-科尔莫戈罗夫-纳吉不等式
对于来自索波列夫空间 W1,p(C)(其中 C ⊂ ℝd 是一个开放凸锥)的函数 f,我们建立了一个尖锐的不等式,通过其梯度的 Lp-norm 和函数的半规范来估计 ∥f∥ L∞。借助这个不等式,我们证明了一个尖锐的不等式,即通过该导数梯度的 Lp-norm 和电荷的 seminorm 来估计定义在 C 的 Lebesgue 可测子集上的电荷的 Radon-Nikodym 导数的 L∞-norm 。在 C = ℝ+m× ℝd-m, 0 ≤ m ≤ d 的情况下,我们得到了通过函数 f : C → ℝ 的 L∞-norm 和该函数混合导数梯度的 Lp-norm 估算该函数混合导数的 L∞-norm 的不等式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Ukrainian Mathematical Journal
Ukrainian Mathematical Journal MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
0.90
自引率
20.00%
发文量
107
审稿时长
4-8 weeks
期刊介绍: Ukrainian Mathematical Journal publishes articles and brief communications on various areas of pure and applied mathematics and contains sections devoted to scientific information, bibliography, and reviews of current problems. It features contributions from researchers from the Ukrainian Mathematics Institute, the major scientific centers of the Ukraine and other countries. Ukrainian Mathematical Journal is a translation of the peer-reviewed journal Ukrains’kyi Matematychnyi Zhurnal, a publication of the Institute of Mathematics of the National Academy of Sciences of Ukraine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信