Atta Ullah, Zahid Akram, Ghulam Rasool, Muhammad Waris, Haris Khurshid
{"title":"Agro-morphological characterization and genetic variability assessment of soybean [Glycine max (L.) Merr.] germplasm for yield and quality traits","authors":"Atta Ullah, Zahid Akram, Ghulam Rasool, Muhammad Waris, Haris Khurshid","doi":"10.1007/s10681-024-03322-5","DOIUrl":null,"url":null,"abstract":"<p>The assessment of genetic variability is indispensable for the development of high-yielding and nutritionally enriched soybean varieties. In this study, fifty-nine soybean genotypes (56 test entries and three standard checks) from different origins were characterized for eight qualitative and 20 quantitative traits. The experiment was laid out in a complete augmented block design for two consecutive seasons under natural rainfed conditions. Results revealed that among qualitative traits, flower colour was found to be most dynamic morphological marker trait for genotypic distribution. Mean square variances for twenty agro-morphological, seed yield and quality traits showed significant differences among tested genotypes for almost all studies traits. Non-hierarchical clustering classified entire set of germplasm into five groups, with the recognition of cluster IV for selection potential. Correlation analysis indicated that seed yield of soybean was positively associated with all yielding components, while a highly negative association was observed between seed quality traits such as protein content (%) and oil content (%). The multivariate principal component analysis (PCA) extracted five essential PCs, which explained 81.22% of the total accumulative variation. Moreover, PCA unveiled the most discriminatory traits as well as superior genotypes which participated intensely in phenotypic variability. Most diverse genotypes identified during study were Jhunghwang, K-D, 24,598, G-35, Brazil-3, 24,560, Ajmeri-1, NARC-2 and 24,608 for improved productivity and enhanced nutritional quality of soybean. The essential traits, including 100-seed weight, seed yield plant<sup>−1</sup>, protein content and oil content depicted influential effects in identifying these desired genotypes. Conclusively, the hybridization of divergent parents in cross-breeding programs may have successful chances to get transgressive segregants with higher seed yield potential along with improved nutritional quality for developing new soybean varieties.</p>","PeriodicalId":11803,"journal":{"name":"Euphytica","volume":"17 1","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Euphytica","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1007/s10681-024-03322-5","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
The assessment of genetic variability is indispensable for the development of high-yielding and nutritionally enriched soybean varieties. In this study, fifty-nine soybean genotypes (56 test entries and three standard checks) from different origins were characterized for eight qualitative and 20 quantitative traits. The experiment was laid out in a complete augmented block design for two consecutive seasons under natural rainfed conditions. Results revealed that among qualitative traits, flower colour was found to be most dynamic morphological marker trait for genotypic distribution. Mean square variances for twenty agro-morphological, seed yield and quality traits showed significant differences among tested genotypes for almost all studies traits. Non-hierarchical clustering classified entire set of germplasm into five groups, with the recognition of cluster IV for selection potential. Correlation analysis indicated that seed yield of soybean was positively associated with all yielding components, while a highly negative association was observed between seed quality traits such as protein content (%) and oil content (%). The multivariate principal component analysis (PCA) extracted five essential PCs, which explained 81.22% of the total accumulative variation. Moreover, PCA unveiled the most discriminatory traits as well as superior genotypes which participated intensely in phenotypic variability. Most diverse genotypes identified during study were Jhunghwang, K-D, 24,598, G-35, Brazil-3, 24,560, Ajmeri-1, NARC-2 and 24,608 for improved productivity and enhanced nutritional quality of soybean. The essential traits, including 100-seed weight, seed yield plant−1, protein content and oil content depicted influential effects in identifying these desired genotypes. Conclusively, the hybridization of divergent parents in cross-breeding programs may have successful chances to get transgressive segregants with higher seed yield potential along with improved nutritional quality for developing new soybean varieties.
期刊介绍:
Euphytica is an international journal on theoretical and applied aspects of plant breeding. It publishes critical reviews and papers on the results of original research related to plant breeding.
The integration of modern and traditional plant breeding is a growing field of research using transgenic crop plants and/or marker assisted breeding in combination with traditional breeding tools. The content should cover the interests of researchers directly or indirectly involved in plant breeding, at universities, breeding institutes, seed industries, plant biotech companies and industries using plant raw materials, and promote stability, adaptability and sustainability in agriculture and agro-industries.